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Abstract

The level-k concept is widely used to assess players’ reasoning in games. This paper argues that
the concept can overstate evidence of bounded reasoning. It uses epistemic game theory to model the
reasoning process typically associated with level-k behavior. The main theorem shows that the level-k
model of reasoning has the predictive power of m-rationalizability. So, behavior viewed as reflecting
k levels of reasoning may be consistent with higher levels of reasoning. The paper goes on to provide
an epistemic characterization of level-k behavior, which highlights the difficulty in inferring levels of

reasoning from the level k categorization.

1 Introduction

The Level-k (Nagel, 1995; Stahl and Wilson, 1994, 1995; Costa-Gomes, Crawford and Broseta, 2001; Costa-
Gomes and Crawford, 2006) and the related cognitive hierarchy (Camerer, Ho and Chong, 2004) models
have played an instrumental role in behavioral game theory. They have gained prominence precisely because
of their ability to explain departures from equilibrium in both experimental data and in applications. At
the same time, these models have come to serve as a lens through which experimenters have assessed
players’ reasoning—and bounded reasoning—in games.

This paper revisits the claim that the categorization of levels, as offered by the level-k literature, can
provide direct information about how players reason—be it reasoning about rationality, reasoning about
irrationality, reasoning about unsophisticated behavior, depths of reasoning or steps in reasoning. It argues
that the current interpretation of the level-k model overestimates the extent to which there is evidence of
“bounded reasoning” in experimental data.

To make this point, we focus on the basic level-k model. That analysis begins with what is called an
anchor, i.e., an exogenous distribution about how the game is played. The anchor is associated with a

distribution of so-called level-0 behavior. A level-1 player has a belief that corresponds to the anchor and
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plays a best response given that belief. The strategies that are a best response to such a belief correspond
to level-1 behavior. A level-2 player has a belief that assigns probability 1 to level-1 behavior and plays a
best response given such a belief. And so on.

To understand our approach, begin with a known result:

Baseline Result: Fix an anchor. If there is a & > 1 so that a strategy is classified as
level k for that anchor, then the same strategy is k-rationalizable, i.e., survives k rounds of

rationalizability.

(See, e.g., Costa-Gomes and Crawford, 2006, pp. 1739 and Schipper and Zhou, 2024, Proposition 1.) As a
consequence of this result, if a strategy is classified as level k, then there is an m > k so that the strategy is
m-rationalizable. (Note, the strategy is k-rationalizable and so m-rationalizable for some m > k.) Standard
results in epistemic game theory establish that a strategy is m-rationalizable if and only if it is consistent

th_order belief of rationality, i.e., R(m — 1)BR. (See, e.g., Brandenburger and

with rationality and (m — 1)
Dekel, 1987 and Tan and Werlang, 1988.) Thus, if a strategy is classified as level k then there is an m > k
so that the strategy is consistent with R(m — 1)BR.

The baseline result points to a preliminary approach for relating the categorization from the level-k

model to steps of reasoning about rationality:

If a strategy is classified as level k and there is no m > k so that the strategy is m-rationalizable,
then the strategy is consistent with R(k — 1)BR but is inconsistent with RmBR for all m > k.
Thus, a classification of k (according to the level-k model) captures the maximum level of

reasoning about rationality consistent with the data.

However, there are many examples where a strategy is classified as level k, despite the fact that the
strategy is consistent with m-rationalizability for m > k. This can occur because the strategy is, in fact,
also classified as level m > k for the same anchor. (See, e.g., Example 1 in Schipper and Zhou, 2024 and
the example in Section 2.!) Or, it can occur because the strategy is classified as level m > k for a different
anchor. But, importantly, it can also occur even if, for every possible anchor, the strategy is classified as at
most level k. Section 2 provides such an example. The example features a strategy that can be classified
as level 1 for an appropriate anchor. However, for any anchor, the strategy cannot be classified as level
k > 2, despite the fact that it is consistent with rationality and common belief of rationality.

This last paragraph already suggests that the categorization given by the level-k model may overestimate
the extent of bounded reasoning: If a strategy is consistent with RmBR, then it is consistent with (m+ 1)-
steps of reasoning about rationality. But it may also be consistent with (m 4+ 1)-steps of reasoning about
rationality and subsequent steps of reasoning about irrationality. And, similarly, if a strategy is consistent
with RmBR, then it is also consistent with (at least) (m 4+ 1) steps of interactive reasoning, e.g., reasoning
through sentences of the form “I think, you think, ....”

That said, this conclusion rests on a particular identification assumption. To better understand the
assumption, return to the statement that any m-rationalizable strategy is consistent with R(m — 1)BR.
There is an important background assumption: that players have a “rich” set of hierarchies of beliefs. The
implicit identification assumption is that the analyst cannot rule out hierarchies of beliefs. If the analyst

knew that the players themselves rule out certain hierarchies of beliefs, then the predictions of R(m —1)BR

IThis is also the idea behind Alaoui and Penta’s (2016) modification of the 11-20 game.



may well be a strict subset of the m-rationalizable strategies. (See Chapter 7 in Battigalli, Friedenberg
and Siniscalchi, 2012 for examples.)

This implicit identification assumption is important for the level-k model. In the level-k model, the
analyst deliberately chooses an anchor and admits only hierarchies of beliefs that are faithful to the anchor.
The choice of the anchor (and so hierarchies) can rest on substantive arguments, such as which behavior
is viewed as salient in a particular setting. Or the analyst may hypothesize that hierarchies are faithful to
some anchor and attempt to estimate the anchor. In either case, the analyst hypothesizes that players rule
out hierarchies of beliefs inconsistent with the anchor.

With this in mind, we focus on a restricted inference problem, one where the analyst has an auxiliary
assumption that hierarchies of beliefs are faithful to an anchor. To formalize this inference problem, we
follow the approach in the epistemic game theory literature by modeling players beliefs with an epistemic
type structure. We focus on a class of such type structures, which we call level-k type structures. These
are type structures where players’ hierarchies of beliefs are generated by an anchor. An important level-k
type structure is, what we call, a complete level-k type structure. This is a level-k type structure that
induces a rich set of beliefs that are consistent with the anchor. In a sense, it is a type structure that does
not impose substantive restrictions on beliefs that go above and beyond the restrictions that stem from
the anchor. (See Sections 4.2 and 9.A.)

Level-k type structures are engineered to mimic the logic of the level-k model. Despite this, in a
complete level-k type structure, the predictions of R(m — 1)BR are exactly the m-rationalizable strategies.
(See Theorem 6.1.) Note, this is irrespective of the particular anchor that generates the complete level-k
type structure. Thus, the reasoning (or “cognitive”) process associated with the level-k solution concept
has the predictive power of rationalizability. This has important implications for the restricted inference
problem: For a particular anchor, a strategy can be categorized as level k (but not level m > k + 1); yet,
there may be an m > k so that the same strategy is consistent with RmBR, even when hierarchies of
beliefs are required to be consistent with the very same anchor.

Why is there a disconnect between the R(m —1)BR predictions in a complete level-k type structure and
the categorization from the level-k analysis? The key is that the level-k model only imposes an exogenous
restriction on the players’ partial hierarchies of beliefs. To better understand what this involves, consider
a level-2 player, who has a belief that other players have a belief (about play) that corresponds to the
anchor. This is distribution on the set of first-order beliefs—i.e., a distribution on what others believe
about the play of the game. A second-order belief, however, is a joint distribution about the strategies and
first-order beliefs—i.e., a joint distribution about how others play the game and what they believe about
the play of the game. The level-k model obtains the full second-order belief (i.e., the joint distribution)
endogenously, through the solution concept. In doing so, it imposes an auxiliary requirement that a player
cannot rationalize different strategies played by different first-order beliefs. Indeed, in a complete level-k
type structure, there will be types that mimic such level-2 players, called 2-types, and those types will not
be able to rationalize different strategies played with different first-order beliefs. However, there will be
other types—types that are consistent with the partial hierarchies of beliefs induced by the anchor—which
can rationalize different strategies played with different first-order beliefs. That is, by explicitly modeling
the hierarchies of beliefs consistent with the anchor, we can see that there is a richer set of m!*-order beliefs
that are consistent with the anchor.

This raises the question: Are there different epistemic assumptions so that the predictions of round &

correspond exactly to the categorization of level k? If so, those assumptions would provide a sense in which



the categorization of a subject as level k& does correspond to k steps of reasoning. Theorem 7.1 provides an
answer in the affirmative. On the plus side, the logic behind the result mimics the logic associated with the
level-k model, suggesting that our approach (throughout this paper) is tight. On the other hand, as we will
discuss, the epistemic analysis points to an arguably new identification assumption: That is, in concluding
that a categorization of level k reflects k steps of reasoning about rationality, the analyst is imposing an
additional identification assumption, one that goes beyond the requirement that hierarchies are induced
by an anchor. (See Identification Assumption 2.) Importantly, that assumption appears difficult to verify
in practice. We discuss this further in Section 7.3.

It is worth emphasizing that the focus of our paper is on the interpretation of the level-k model as a
model of reasoning. Our central result shows that the reasoning (or “cognitive”) model typically associated
with the level-k solution concept has less predictive power than the level-k concept itself. As a consequence,
using the concept to evaluate reasoning in games can result in overestimating the extent to which there
is bounded reasoning. Of course, this does not question the usefulness of the level-k solution concept for

fitting behavior.

Literature This is not the first paper to point to difficulties in drawing inferences about how players
reason from the level k classification. The literature has pointed to at least four difficulties. First, it may
be difficult to ascertain the anchor that generates players’ beliefs. Toward that end, some papers have
suggested looking for a best-fitting anchor (Crawford and Iriberri, 2007; Wright and Leyton-Brown, 2019),
providing auxiliary evidence on the anchor (Costa-Gomes and Crawford, 2006; Brocas, Carrillo, Wang and
Camerer, 2014; Burchardi and Penczynski, 2014), or designing the game with the aim of making an anchor
highly salient (Arad and Rubinstein, 2012). Second, it may be that the players themselves are uncertain
about the anchor. (This is captured by Strzalecki’s, 2014, cognitive rationalizability and is in the spirit of
Section 2.3.2 in Alaoui and Penta, 2016.) Third, there may be measurement error or other noise in the
data, which may make it difficult to infer a categorization of level k from observed play. (See Stahl and
Wilson, 1995, Costa-Gomes and Crawford, 2006, and Cooper, Fatas, Morales and Qi, 2024.) Fourth, it
may be that the inferred levels of reasoning are not portable across games. (See Georganas, Healy and
Weber, 2015, Alaoui and Penta, 2016, Alaoui, Janezic and Penta, 2020, and Cooper, Fatas, Morales and
Qi, 2024.)

We abstract from these important concerns and study an idealized setting. In particular, we focus on
a setting where there is one anchor that generates players’ hierarchies of beliefs and that anchor is known
to the analyst. So, neither the players nor the analyst face uncertainty about the anchor. Moreover, there
is no measurement error or noise in the data. In addition, we ignore concerns about portability. We argue
that, even in this idealized setting, a classification of level k may overestimate the extent to which there is
bounded reasoning.

The paper sits within a growing literature aimed at bringing ideas from epistemic game theory to bear
on experimental data. (Examples include Kneeland, 2015, Ghosh, Heifetz and Verbrugge, 2016, Ghosh and
Verbrugge, 2018, Li and Schipper, 2020, Brandenburger, Danieli and Friedenberg, 2021, Friedenberg and
Kneeland, 2024, and Healy, 2024.) Moreover, it can be viewed as providing a bridge between the level-k
literature and epistemic game theory. Schipper and Zhou (2024) and Liu and Ziegler (2025) are two recent
attempts to provide such a bridge. Schipper and Zhou uses ideas from epistemic game theory to motivate
a notion of level-k reasoning in extensive-form games. Liu and Ziegler model a level-0 player as one that

has different payoffs from those specified in the game; it then uses rationalizability concepts to analyze



the game of incomplete information and to draw connections to the level-k literature. The focus of these
papers differs from ours; in particular, they do not directly address the identification problem.

In the course of our analysis, we introduce the concept of a level-k type structure. This is a particular
epistemic type structure that induces hierarchies of beliefs consistent with the anchor. It differs from other
rich type structures meant to model the level-k and cognitive-hierarchy concepts, e.g., Kets (2010), Heifetz
and Kets (2013), and Strzalecki (2014). The type structures in Kets (2010) and Heifetz and Kets (2013)
capture finite-order beliefs about a primitive set of uncertainty, where the players may face uncertainty
about the length of other players’ finite-order beliefs. The type structure in Strzalecki (2014) captures
hierarchies of beliefs about numbers (interpreted as levels). Much like Kets and Heifetz and Kets, our
framework directly models beliefs about a primitive set of uncertainty. Unlike those papers, we do not
include types with finite-order beliefs or beliefs about finite levels. This stems from the differences in the
questions addressed by the papers. We are interested in understanding the extent to which behavior is
consistent with high levels of reasoning. As a consequence, the ability to rationalize the behavior with a
type structure that induces hierarchies of beliefs (as opposed to finite-order beliefs) is a plus. (See also the

discussion in Section 9E.)

2 Heuristic Treatment

Consider the game in Figure 2.1, where Player 1 is denoted by P1 (she) and Player 2 is denoted by P2
(he). We begin by applying the standard level-k solution concept to the game.

P2
as b2 C2 d2

ar | 9,9 | 1,0 4,1 1,0

by | 0,1 4, 4 1,0 4,0
P1

al 1,4 0,1 0,0 0,3

di| 0,1 0, 4 3,0 3,3

Figure 2.1: A Common-Interest Game

The level-k solution concept begins by fixing an exogenous anchor for each player. For Pi=P1,P2 this
is a distribution u; on the strategies the other player, Pj, can choose. The level-1 strategies for Pi are the
strategies that are a best response under p;. The level-2 strategies for Pi are the strategies that are a best
response under a belief that assigns probability 1 to level-1 strategies of Pj. And so on.

Figure 2.2 describes the level-k behavior in four cases. In each case, P1 and P2 have the same anchor,
i.e., 1 = po: This is either the uniform anchor, the anchor where Pi assigns probability 1 to Pj choosing
a;, the anchor where Pi assigns probability 1 to Pj choosing c;, or the anchor where Pi assigns probability
1 to Pj choosing d;. Notice, for each strategy s; € {a;, b;, ¢;} and each number m > 1, there is some anchor
so that s; is classified as level m for Pi.?

In each of these cases, there is no m so that d; is classified as level m for Pi. If Pi has an anchor that

assigns 0.5 : 0.5 to ¢; : dj, then d; would be level 1. But, regardless of Pj’s anchor, d; cannot be be level

2As standard, we refer to the solution concept as “level-k.” We use the index m to refer to a particular realization of k.



Uniform | 1 to qa; 1 to ¢ 1 to d;
Level-1 b ¢ a; b;
Level-2 b; a; c; b;
Level-3 b; Ci a; b;
Level-4 b a; ¢ b;
Level-5 b; ci a; b;

Figure 2.2: Level-k

2. More generally:
Claim 2.1. Suppose P1’s and P2’s anchors are given by (1, pe). If d; is level m for Pi, then m = 1.

The key observation is that d; is optimal only under a distribution that assigns positive probability to both
c¢j and d;.> Therefore, if d; is level 2 for Pi, it must be that both ¢; and d; are level 1 for Pj. However,
there is no anchor u; under which ¢; and d; are both a best response.? Thus, d; cannot be level 2 for P,
regardless of Pj’s anchor p;. And, similarly, d; is not level 2 for Pj, regardless of Pi’s anchor y;. This, in

turn, implies that d; is not level 3 for Pi. And so on, for any m > 3.

The Basic Inference Problem To recap, the strategies d; and ds are level 1 for some anchor. But, for
any anchor and any m > 2, d; and dy are not level m.

Suppose the analyst observes only data about how the game is played (and not auxiliary data, say,
about players’ beliefs). In particular, suppose the analyst observes P1 play d;. What can the analyst infer
about how she reasons? Based on the level-k analysis, the analyst might be tempted to conclude that
P1 is rational—in the sense that she plays a best response to the anchor—but does not reason further.
Language used in the literature is that P1 believes P2 is nonstrategic, P1 reasons one step, or P1 has depth
of reasoning one.

However, in this game, the entire strategy set is rationalizable. Standard results in epistemic game
theory show that any rationalizable strategy is consistent with rationality and common belief of rationality.
(See, e.g., Brandenburger and Dekel, 1987 and Tan and Werlang, 1988.) Thus, the observation of d; does
not, in and of itself, indicate that a P1 must believe P2 is not a “strategic” player.

More generally, the observation of d; alone cannot point to a bound in the steps or depth of reasoning,
i.e., how many steps of “I think, you think, I think ...” P1 can perform: P1 can only engage in rationality
and (m — 1) rounds of reasoning about rationality, if she can engage if m steps of “I think, you think, I
think ...” Thus, if behavior is consistent with rationality and common belief of rationality then it is also

consistent with an unbounded depth of reasoning.

Rationality and Common Belief of Rationality It will be useful to understand better what goes

into the statement that d; is consistent with rationality and common belief of rationality. To do so, we

3When Pj is restricted to playing a strategy in {a;, b;,d;} (vesp. {a;,b;,c;}), d; is dominated by a 0.25 : 0.75 mixture on
a; @ b; (resp. by a;).
41f ¢; and d; have the same expected payoff, then the expected payoff of a; must be strictly higher.



revisit a standard epistemic model, as applied to Figure 2.1. A hallmark of the model is that it describes
the players’ hierarchies of beliefs about the play of the game. This is a necessary step: To specify whether
P1 is rational, we must describe what beliefs P1 holds about P2’s play. After all, whether a strategy is a
best response for P1 depends on her first-order belief. By similar logic, to specify whether P1 does or does
not believe P2 is rational, we must describe P1’s joint belief about P2’s strategy and first-order belief, i.e.,
about his strategy and belief about P1’s play. After all, whether a strategy is rational or irrational for P2
will depend on his first-order belief. And so on.

We model these hierarchies of beliefs by an epistemic type structure, in the spirit of Harsanyi (1967).
The type structure has two ingredients. First, for each Pi, there is a set of types T;. In our example, the
set of types is:

T; = {ti, ui, v, w; }.

Second, for each Pi, there is a belief map f;, taking each type of Pi to a belief about the strategy-type

pairs of Pj. In our example, the belief map is:
Biti)(cj,v;) =1, Bi(ui) (b, uz) = 1, Bi(vi)(aj, t;) =1,

and )

Bi(wi)(ej, v5) = Bi(wi)(d;, wy) = 5.
Each type induces hierarchies of beliefs about the play of the game. For instance, type t; assigns probability
1 to Pj playing c;, while type v; assigns assigns probability 1 to Pj playing a;. Since ¢; assigns probability
1 to (¢j,v;), t; assigns probability 1 to “Pj plays ¢; and believes I play a;.” And so on. See Section 3.2 for
the general case.

Now turn to rationality, belief in rationality, etc. Rationality is a property of a strategy-type pair:
Whether a strategy is rational or irrational depends on the belief that a player holds, where the belief
is specified by a type. For instance, the pair (a;,t;) is rational, since a; maximizes Pi’s expected payoffs
given the belief associated with ¢;. (The action a, is a best response to ¢;.) In fact, the set of rational
strategy-type pairs for Pi is:

Ri = {(ai, ts), (bi, uq), (i, vq), (di, wi) }.

Observe that each type of Pi assigns probability 1 to “Pj is rational,” i.e., to the event R;. Thus, each
type of Pi believes the other player is rational. So, R; is also the set of strategy-type pairs for P that are
consistent with rationality and 15t-order belief of rationality. From here, we can iterate to conclude that
R; is, in fact, the set of strategy-type pairs consistent with rationality and common belief of rationality
(RCBR). As a consequence, each of a;, b;, ¢;, and d; is consistent with RCBR.

Hierarchies of Beliefs vs. Anchored Beliefs We have seen that the strategy d; is, in fact, consistent
with RCBR. To show this, we produced a specific model of P1’s and P2’s hierarchies of beliefs and pointed to
a type in that model, namely w;, so that (d;, w;) is rational, believes Pj is rational, and so on. Importantly,
those hierarchies of beliefs were inconsistent with the idea that the players’ hierarchies are generated by
an anchor. Take, for instance, the case where P1’s and P2’s anchors (u1, p2) both assign probability 1 to
the other player Pj choosing c;. Type ¢; has the first-order belief associated with P1’s anchor 41 and type
vy believes P2 has the first-order belief associated with P2’s anchor us. But, types u; and w; do not have

hierarchies of beliefs consistent with this anchor. Similarly, if P1’s and P2’s anchors (1, u2) both assign



probability 0.5 : 0.5 to the other player Pj choosing c; or d;, then type w; has first-order beliefs associated
with P1’s anchor. But no other type has hierarchies consistent with this anchor. And so on. (See Example
5.1 for a more complete argument.)

Arguably, the spirit of level-k analysis involves a restriction on the hierarchies of beliefs that players can
hold. In particular, the analysis imposes the substantive assumption that the players’ beliefs are generated
by a particular anchor. This assumption is important in categorizing a particular strategy as level m for
some m > 1.

This raises the question: Suppose players’ hierarchies of beliefs are generated by an anchor. In that
case, would the observation of d; allow the analyst to conclude that Pi’s behavior is inconsistent with Pi
being rational and believing Pj is rational? That is, would the observation of d; point to a form of bounded

reasoning?

The Restricted Inference Problem To address the question, our analysis focuses on, what we call,
(epistemic) level-k type structures. Much as above, these are type structures that involve type sets and
belief maps for each of P1 and P2. But, now, the type set of Pi can be decomposed into a set of 1-types
(T!), a set of 2-types (T?), etc. The 1-types each have first-order beliefs associated with the anchor. The
2-types each assign probability 1 to Pj having a 1-type (i.e., their marginal beliefs on T} assign probability
1 to le). And so on. Importantly, a level-k type structure is defined relative to a particular anchor and only
induces hierarchies of beliefs consistent with that anchor. (See Proposition 5.1.) Thus, the type structure
cannot induce all hierarchies of beliefs. (See Proposition 5.2.)

In principle, a level-k type structure can impose substantive assumptions about beliefs that go above and
beyond the assumption that players’ hierarchies are generated by the anchor. To rule out such substantive
assumptions, we focus on, what we call, a complete level-k type structure. This is a level-k type structure
that satisfies the following requirement: For every belief that assigns probability 1 to the m-types of Pj,
there is an (m + 1)-type of Pi that induces that belief. Proposition 5.3 shows that there exists a complete
level-k type structure that induces a rich set of beliefs consistent with the anchor. (See, also, Section 9A.)

The main theorem provides the behavioral implications of rationality and m!"-order belief of rationality

(RmBR) in a complete level-k type structure.

Main Theorem (Theorem 6.1). In any complete level-k type structure (for a particular

anchor), the predictions of RmBR are exactly the (m 4 1)-rationalizable strategies.

Thus, even when we focus on models of hierarchies of beliefs that are consistent with the anchor, each
(m + 1)-rationalizable strategy is consistent with RmBR.

Return to Figure 2.1. If we observe P1 play d;, we cannot conclude that there is a bound m so that
the behavior must reflect RmBR—importantly, we cannot draw this conclusion even if we assume that
the hierarchies of beliefs are generated by a particular anchor. Thus, the categorization of d; as level-1
does not allow us to draw a conclusion about bounded reasoning—at least not without additional auxiliary
assumptions about how players reason or without a richer dataset. Section 7 discusses such additional

auxiliary assumptions and the difficulty of verifying those assumptions in the data.



3 The Environment

We begin with mathematical preliminaries used throughout the paper. Fix a metrizable set {2 and endow
) with the Borel o-algebra. We will refer to an element of the Borel o-algebra as an event. Write A(2)
for the set of Borel probability measures on 2 and endow A() with the topology of weak convergence.
Let I be a finite index set and (£2; : 4 € I) be a collection of metrizable sets. Write Q_; = Hjel\{i} Q;
and Q = [[,c;
collection of metrizable sets (®; : ¢ € I) and measurable maps f; : Q; — ®;, write f_; : Q_; — ®_; for

;. Endow the product of metrizable spaces with the product topology. Given a second

the associated product map, i.e., if w_; = (w; : j # ), then f_;(w_;) = (fj(w;) : j # i). If each f; is
measurable (resp. continuous), then each f_; is also measurable (resp. continuous).

Fix metrizable sets 2 and ® and let f : Q@ — ® be a measurable map. The image measure of f under
1€ A(Q) is a measure v € A(®) where, for each Borel E C @, v(E) = p(f~(E)). Let f: A(Q) — A(®)
map each v € A(Q) to the image measure of f under v. Note, f is measurable and, if f is continuous,
[ is continuous. (For measurability, see Friedenberg and Keisler, 2021, Lemma A.1; for continuity, see
Aliprantis and Border, 2007, Theorem 14.14.)

Given a Borel set ® C y x Qy, write projg, : & — §; for the projection mapping, i.e., the mapping
with proj g, (wi,w2) = wi. If p € A(®), write margq p for the measure v € A(Qy) with v(E;) =
p((proj g, ) *(E1)) for each Borel By C Q.

3.1 The Epistemic Game

Throughout the paper, fix a game G = (S;,m; : @ € I): Here, I is a finite set of players, S; is a finite
strategy set for player i, and 7; : S; X S_; — R is player i’s payoff function. The game is non-trivial, in
that each player has at least two strategies (that is, |\S;| > 2). Extend m; to m; : S; X A(S—;) — R in the
usual way.

An epistemic game appends to the game a description of the players’ hierarchies of beliefs about the play
of the game. Following Harsanyi (1967), we use type structures as implicit descriptions of the hierarchies
of beliefs.

Definition 3.1. An S-based type structure is some 7 = (S_;,T;,8; : i € I) where:
(i) for each 4, T; is a metrizable set of types for i, and
(ii) for each i, B; : T; — A(S_; x T_;) is a measurable belief map for .

In an S-based type structure, each type ¢; of player ¢ is mapped to a joint belief about the strategies and
types of the other players. Because the set of strategies is fixed throughout our analysis, we often refer to
an S-based type structure as, simply, a type structure. When each T; is (at most) countable, we call the

type structure countable.

3.2 Type Structures and Hierarchies of Beliefs

The epistemic game describes the rules of the game, payoff functions, and hierarchies of beliefs about the
play of the game. The first two ingredients are captured by G and the latter ingredient is captured by a
type structure. The example in Section 2 indicates how types induce hierarchies of beliefs. In particular,

each type t; induces a belief about the strategies about other players, given by marg s_.Bi (t;). For instance,



type w;’s first-order belief assigns 0.5 : 0.5 to ¢; : d;j. Moreover, because each type has a joint belief about
the strategy and type of the other player, each type has a joint belief about the strategy and first-order
belief of the other player. For instance, type w; assigns 0.5 to “Pj will play c; and believes that I will play
a;” and 0.5 to “Pj will play d; and assigns 0.5 : 0.5 to me playing ¢; : d;.” These joint beliefs constitute
the type’s second-order beliefs. And so on.

Begin by inductively describing the set of m‘"-order beliefs of player i. Set X} = S_,; and H} = A(X})
and note both are compact metric spaces. Assume the sets X" and H]" have been defined and are compact

metric spaces. Set:
X ={(s_s,ht,y .o h™) € X x H™, @ if m > 2 then, for each j # i, marg ym-1h;" = h;?””ﬂ’}
J

and Hierl = A(X;“H). These, too, are compact metric spaces. (See Friedenberg, 2010, Lemma A1l and
Remark A1.) The set X!™ is player i’s m**-order space of uncertainty. The set H!™ is player i’s set of

mth-order beliefs. Then

H® = {(h},h},..) € [[ H™: for each m, marg x.hj"*" = hi"}

m>1

is player i’s set of hierarchies of beliefs.

For each m > 1, there is a natural mapping 6" : T; — H", specifying each type’s m*'-order belief.
Type t;’s first-order belief is simply the marginal of 5;(¢;) on the strategies of the other players; that is,
6;(t;) = marg g Bi(t;). Type t;’s second-order belief, viz., §7(t;) = hZ, is a joint belief about strategies and
first-order beliefs: The probability that h? assigns to an event in S_; x H!, is the probability that j3;(t;)
assigns to strategy-type pairs that induce that event. More precisely, for each event E_; C X} x Hl, =
S % Tl A(S-)):

hH(E—i) = Bilts) ({(s—ist—i) : (-4, 01,(t3)) € E_i}).

Appendix A.1 formally describes the maps §;" : T; — H/". Given these maps, the map §; : T; — H® is
defined by §;(t;) = (0},62,...). If 6;(t;) = h; (resp. 6 (¢;) = h™), say that type ¢; induces the hierarchy
of beliefs h; (resp. the m"-order belief h). The set of hierarchies of beliefs for i induced by 7T is
0;(T;) € H;.

Of particular interest is a type structure that induces all hierarchies of beliefs.

Definition 3.2. Call the type structure 7* hierarchy-complete if, for each S-based type structure T,
T* induces the hierarchies of beliefs induced by 7.5

To better understand the concept, consider a hierarchy-complete type structure 7*

= (S_0,T}.B; i € 1),
associated with hierarchy maps 6} : T — H>®. If T = (S_;,T;,5; : i € I) is associated with hierarchy
maps d; : T; — H°, then §;(T;) C 67 (T;). Thus, a hierarchy-complete type structure induces any hierarchy
of beliefs that can be induced by any type structure. The canonical constructions of a so-called universal
type structure (e.g,. Mertens and Zamir, 1985, Brandenburger and Dekel, 1993, Heifetz and Samet, 1998,

etc) are hierarchy-complete.

5Some papers refer to this property as “universal.” However, since the phrase universal is also used differently in the
literature, we refer to this property as “hierarchy-complete.”
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4  Hierarchies of Beliefs Induced by the Anchor

The level-k solution concept is tied to an anchor p = (u; : i € I) € [[;c; A(S—;); call p; i’s anchor.

Remark 4.1. The literature will often fix a symmetric game and look at symmetric anchors, i.e., anchors
where each player has the same belief about how others play the game. (There are important exceptions.)
Because we apply the ideas to arbitrary games (i.e., not necessarily symmetric games), we do not restrict the
anchors to be symmetric. To be sure, players’ anchors can be symmetric, but they need not be symmetric.
Likewise, anchors can involve a belief that is independent or correlated. They can involve degenerate or

non-degenerate beliefs. Etc.

Conceptually, an anchor specifies a first-order belief for each player 7. This implicitly limits the hier-
archies of beliefs the players consider possible. However, importantly, the anchor alone does not uniquely
pin down those hierarchies. Instead, it restricts, what we will call, the hierarchies of partial beliefs. This
section describes how the anchor restricts the partial hierarchies and, in turn, restricts the hierarchies of
beliefs.

4.1 Hierarchies of Partial Beliefs

Much as types induce hierarchies of beliefs, they induce hierarchies of partial beliefs. To understand the
difference between hierarchies of beliefs and hierarchies of partial beliefs, return to the example in Section
2. Bach type t; induces a belief about the strategies about other players, given by marg Sﬂﬂi(ﬂ-). This is
both the type’s first-order belief and first-order partial belief. That is, there is no distinction that arises at
the first-order. While a type’s second-order belief is a joint belief about strategies and first-order beliefs,
the type’s second-order partial belief is a belief only about first-order beliefs. So, type w;’s second-order

Y

partial belief assigns 0.5 to “Pj believes that I will play a;” and 0.5 to “Pj assigns 0.5 : 0.5 to me playing
¢; : d;.” It does not include the statement that w; assigns probability 0.5 to “Pj will play c¢; and believes
I will play a;.” As a consequence, it does not include information that, if w; believes “Pj believes that I
will play a;,” then w; believes “Pj will play c;.” This is the sense in which this hierarchy is partial.

We now specify the hierarchies of partial beliefs. Set P} = A(S_;) and note that it is a compact metric
space. Assume sets P have been defined and these are each compact metric spaces. Set P! = A(P™)
and note that it too is a compact metric space. Notice P? = Al en iy A(S-5)) is the set of beliefs about
first-order (partial) beliefs, while H? = A(IIp iy (5= x A(S-;))) is the set of joint beliefs about strategies

and first-order beliefs. More generally, the set P/ is player i’s set of m*?-order partial beliefs. Write

p=1IP"

m>1

for the set of hierarchies of partial beliefs.

The anchor implicitly imposes a restriction on the m**-order partial beliefs that players consider possi-
ble. For instance, if i is a level-1 player, then i’s first-order partial belief must correspond to the anchor. If
i is a level-2 player, then ¢’s second-order partial belief must assign probability 1 to the first-order beliefs
p_; = (pj - j € I\{i}). And so on.

More generally, an anchor pu = (u; : i € I) € [[;c; A(S-;) uniquely determines mtP-order partial
beliefs, p;",: Set p}) u = Mi- Assuming each p”,, € P/™ has been defined, let prtl e Pim+1 be the measure

i
with p" " ({p™; . }) = 1.
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4.2 Hierarchies of Beliefs Consistent with the Anchor

There is a natural mapping from hierarchies of beliefs to hierarchies of partial beliefs, viz. n; : H>* — P7.
To understand the mapping, consider n;(h},h?,...) = (p},p?,...). Intuitively, p! = h} since there is no
distinction between first-order beliefs and first-order partial beliefs. Moreover, p? = marg I,.: AC Sfj)hf,
since a second-order partial belief simply provides information about beliefs over first-order partial beliefs
and first-order partial beliefs are the first-order beliefs. Since there is a distinction between second-order
partial beliefs and second-order beliefs, the relationship between h$ and p? requires care.

To define the mapping 7;, it will be convenient to define sets that correspond to i’s m!*-order space
of partial uncertainty, i.e., Y;". Set Y;' = S_; and, for m > 2, Y/ = P™~'. Note that P = A(Y;™).
Now, inductively define continuous maps 7" : X — Y™ and ™ : H™ — P™: First, take 5} : X} — Y;!
and n} : H! — P! to be the identity maps; note that these are continuous. Next, assume continuous

maps 7" : X* — Y/ and n* : H™ — P/ have been defined. Define 7" : X1 — V™" 50 that,

2

for each z"*t = (", h™,) € X" At (@, b)) = ™ (R™,). Since each n" is continuous, A7 is
continuous. Now let 7"t = 7! so that n/" ™! (k1) is the image measure of A" under 7" ™; note

—1

that nj"*' = 77" is continuous since /""" is continuous.

The map n; : H® — P> is given by n;(h}, h?,...) = (nt(h}),n?(h?),...). Thus it maps each hierarchy

of beliefs to its associated hierarchy of partial beliefs.

Definition 4.1. Say a hierarchy h; = (h},hZ,...) is consistent with the anchor g = (u; :i € I) €
[L;icr A(S-:) if there exists some m > 1 so that n{"(h]") = p;",.

If h; = (hl,h%,...) is consistent with the anchor, there is some m!*-order belief that coincides with the
m*-order partial beliefs induced by the anchor. This captures the restriction on beliefs implicitly imposed
by the level-k solution concept. (Note, there, a player classified as level m has m'"-order partial beliefs

induced by the anchor, but may not have n‘"-order partial beliefs induced by the anchor for some n # m.)

5 Level-k Type Structures

We will be interested in type structures that only induce hierarchies of beliefs consistent with the anchor.

This will be captured by a level-k type structure.

5.1 Level-k Type Structure

Fix a type structure T = (S_;,T;,5; : i € I). Say C; = {T/" : m = 1,2,...} is a Borel cover of T; if
(i) each 7™ is a non-empty Borel subset of 7}, and (ii) U,,>, 7;" = T;. Note, a countable partition of T;

is a Borel cover, if each of its members is Borel. But, a Borel cover need not be a partition.

Definition 5.1. Call 7 = (S_;,T;,8; : i € I) a level-k type structure (for p = (u; : i € I)) if, for each
i, there exists a Borel cover C; = {T/™ : m = 1,2,...} of T; so that the following hold:

(i) if ¢; € T}, then marg g B3;(t;) = p;, and
(ii) for each m > 1, if t; € T/, then B;(t;)(S_; x T™) = 1.

In a level-k type structure, we can decompose each player’s types into non-empty sets T}, T2, . ... We will

refer to types in T)" as i’'s m-types. The 1-types have first-order beliefs associated with the anchor pu.
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The 2-types assign probability 1 to the 1-types. More generally, the (m + 1)-types assign probability 1 to
the m-types.

Example 5.1. To understand better what goes into a level-k type structure, return to the example of
Section 2. That type structure is not a level-k type structure for any anchor g = (u1, pu2). Indeed, suppose,
contra hypothesis, that this type structure is a level-k type structure for some anchor p. Then, for each 1,
there exists some m; so that u; is an m;-type. Observe that, if u; is an m;-type then u_; is an (m; — 1)-
type. This implies that there must be some player i for which u; € T} and, therefore, p;(b;) = 1. As a
consequence, u; is the unique 1-type for that 4.

Without loss of generality, suppose T} = {u;}. Since, T} = {u1} and T2 # (), it follows that T3 = {ua}.
Iterating this argument,

T2 = {uy} and T3™ = {uy}

for each m > 1.

Observe, since ta, us, v2, and wy have distinct first-order beliefs, Ty must be a singleton. Since each
t; € T? must assign probability 1 to T, the set T2 must also be a singleton. Now, by induction, for each
7 and each m, T]™ must be a singleton. But, then, there is no m > 1 so that w; is an m-type.

Thus, there can be no anchor p so that the example is classified as a level-k type structure for p.
Indeed, an analogous argument shows that there is no p so that the type structure induces only hierarchies

of beliefs consistent with p.

This argument reflects the fact that, in the example, the type structure induces hierarchies of beliefs
that are inconsistent with a single anchor. By contrast, level-k type structures only induce hierarchies of

beliefs consistent with an anchor.

Proposition 5.1. Let T be a level-k type structure for . Then each hierarchy of beliefs induced by T is

consistent with .

Appendix A.2 proves Proposition 5.1. The proof follows from a stronger claim: If a type is classified as
an m-type (according to any appropriately chosen cover), then the type must induce the m!"-order partial
beliefs p’,. So 1-types have first-order (partial) beliefs that coincide with the anchor; 2-types believe other
players’ first-order (partial) beliefs coincide with the anchor; and so on. This provides an interpretation of
the m-types.

Because there are (always) hierarchies of beliefs that are inconsistent with the anchor, no level-k type

structure can induce all hierarchies of beliefs.

Proposition 5.2. If T = (S_;,T;,5; : i € I) is a level-k type structure for p, then T is not hierarchy-

complete.

To understand the result, fix an anchor p = (p; : ¢ € I) and a profile of first-order beliefs v = (v; : i € I)
where each p; # v;. There is a profile of hierarchies of beliefs (h; : @ € I) at which player ’s first-order
beliefs are v; and this fact is commonly believed. But, that hierarchy cannot be induced by any type in any
level-k type structure for p: In a level-k type structure, an m-type must induce m!*-order partial beliefs
consistent with the anchor p. But, for each m, h; induces m‘"-order partial beliefs that are inconsistent

with the anchor.
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5.2 Hierarchies Induced by Level-k Type Structures

While a level-k type structure must induce hierarchies of beliefs consistent with the anchor u, two different
level-k type structures (for p) may induce different hierarchies of beliefs. The next two examples illustrate
this fact.

Example 5.2. Consider a two-player game where each S; = {0O;,;}. Suppose the anchor p = (p1, 12)

is such that, for each 4, p;(0_;) = % Consider a type structure 7 with the following properties: Set

Ty = T, = N*. Take each $;(1) so that 3;(1)(0_;,2) = 2 and B;(1)(<¢_;,3) = 5. For m > 2, take
Bi(m)(O_;,m—1)=1 if m is even,

and

Bi(m)(C_;ym—1)=1 if m is odd.
For each 4, {T]" = {m} : m > 1} is a Borel cover of T;. Thus, 7 is a level-k type structure.

Example 5.3. Consider a two-player game where each S; = {0O;,;}. Suppose the anchor p = (p1, 2)

is such that, for each 4, p;(0_;) = % Consider a type structure 7 with the following properties: Set

Ty = T, = N*. Take each 8;(1) so that 3;(1)(0_;,2) = 2 and B;(1)(<¢_;,3) = 5. For m > 2, take

1
Bi(m)(O—i,m —1) = Fi(m)(C-i,m — 1)) = 5.
For each 4, {T}" = {m} : m > 1} is a Borel cover for 7. Thus, T is a level-k type structure.

Examples 5.2-5.3 provide two different level-k type structures for a given anchor p. In both type
structures, the 1-types have first-order (partial) beliefs associated with the anchor, i.e., they assign % : % to
O_; : ©&_;. Likewise, in both type structures, the 2-type have second-order partial beliefs associated with
the anchor, i.e., the type t; = 2 assigns probability 1 to t_; = 1 and so probability 1 to the event that “the
other player assigns % : % to O_; : ©_;.” And so on. In this sense, the types induce hierarchies of partial
beliefs consistent with the anchor, illustrating Proposition 5.1.

However, in these two examples, the type structures induce disjoint sets of hierarchies of beliefs. To
see this, observe that the first-order beliefs of m-types differs in these type structures, when m > 2. In
Example 5.2, each such m-type has a degenerate belief, assigning probability 1 to either of O_; or &_j; in
Example 5.3, each such m-type has a non-degenerate belief, assigning % : % to O_; : ©_;. Thus, for each
type m > 2 in Example 5.2, there is no type n > 1 in Example 5.3 that induces the same first-order beliefs,
a fortiori the same hierarchies of beliefs. And conversely, with Example 5.3 and Example 5.2 reversed.
Moreover, the 1-types induce distinct second-order beliefs. In Example 5.2, type 1 assigns probability %
to “the other player chooses O_; and assigns probability 1 to me choosing O;;” however, in Example 5.3,

type 1 assigns zero probability to that same event.

5.3 Complete Level-k Type Structures

Proposition 5.1 says that a level-k type structure imposes the substantive assumption that the hierarchies
are induced by the anchor. But, Examples 5.2-5.3 illustrated that there may be multiple level-k type

structures, associated with the same anchor, which induce different hierarchies of beliefs. To understand
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why this arises, note that, in Examples 5.2-5.3 there is exactly one 2-type. Yet, there are many second-
order beliefs that a player can hold, even if the player has a second-order partial belief consistent with the
anchor. Both type structures rule out such second-order beliefs and, in doing so, they impose auxiliary
assumptions on players’ hierarchies of beliefs. These auxiliary assumptions on beliefs go above and beyond
the substantive assumptions imposed by the anchor. We will be interested in type structures that do not

impose these exogenous restrictions on beliefs (or, at least, minimize such exogenous restrictions).

Definition 5.2. Call T = (S_;,T;,0; : i € I) a complete level-k type structure (for p = (u; : ¢ € I))
if, for each 4, there exists a Borel cover C; = {T/" : m = 1,2,...} of T; so that the following hold:

(i) if ¢; € T, then marg g, Bi(t;) = ps,
(ii) for each m > 1, if t; € T;"*', then B;(t;)(S—; x T™) = 1, and
(iii) for each m > 1 and each v; € A(S_; x T_;) with v;(S_; x T™) = 1, there is a type t; € Tim“.

Call T a complete level-k type structure if there is some p so that 7 is a complete level-k type

structure for p.

Thus, T is a complete level-k type structure for p if it is a level-k type structure that satisfies the following
additional requirement: For each belief that assigns probability 1 to the m-types, there is an (m + 1)-type
of the player that holds that belief.

We can always find a complete level-k type structure.

Proposition 5.3. Fiz some p = (u; : @ € I). There exists a complete level-k type structure for w, viz.
T*, that satisfies the following property: If T is a countable level-k type structure for p, then T* induces
the hierarchies of beliefs induced by T .

The proof of Proposition 5.3 constructs a particular level-k type structure 7* = (S_;, T/, 5} : i € I). The
construction has a rich set of 1-types, i.e., for each v; € A(S_; x T*;) with marg 5_.v; = p;, there is a
I-type in T;* that holds that belief.® Thus, there are no restrictions on the beliefs of 1-types aside from the
requirement that their first-order beliefs coincide with the anchor (and that they have higher-order beliefs
consistent with the type structure). With this, condition (iii) implies that the construction has a rich set
of 2-types. And so on.

That said, there are hierarchies of beliefs consistent with the anchor that cannot be induced by any
level-k type structure, a fortiori any complete level-k type structure.” Section 9A provides an example
and a broader discussion of missing hierarchies. Section 9B discusses why any missing hierarchies are

immaterial from the perspective of the inference problem.

6 The Inference Problem

We will be interested in the case where the analyst observes the strategy played and wants to infer the max-
imum level of reasoning about rationality consistent with observed behavior.® Reasoning about rationality

will be captured by the epistemic conditions of rationality and mt"-order belief of rationality.

6There are alternate constructions of complete level-k type structures that do not satisfy this richness property.

It is also the case that the structure constructed in Proposition 5.3 is not type-complete, in the sense that the belief maps
are not onto.

80f course, at times, authors augment the dataset with other observed variables of interest. Our concern is what the
analyst can learn from the observed play, which is the focus of many studies.
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6.1 Rationality and m!*-order Belief of Rationality

An epistemic game (G, T) induces a set of states S x T'. So, a state describes a strategy-type pair for each
player. Rationality and m!*-order belief of rationality is a property that a state may or may not possess.

Given some v; € A(S_;), write BR;[v;] for the set of strategies s; € S; with m;(s;,v;) > m;(ry, v;) for all
r; € 5;.

Definition 6.1. Say (s;,t;) is rational if 5; € BR;[marg g_. 5;(t;)].

So a strategy-type pair (s;,t;) is rational if s; is a best response under the first-order belief associated with

ti, viz. marg g Bi(t;).
Definition 6.2. Say t; € T; believes E_; C S_; x T_; if E_; is Borel and g;(¢;)(E—;) = 1.
So a type t; believes an event if it assigns probability 1 to the event (i.e., to the Borel set F_;). Given

some F_; CS_; x T_;, write
Bi(E—i) = {tz - T; : ﬁz(tz)(E—z) = 1}

for the set of types that believe E_;. Note, if E_; =), then B;(E_;) = 0.
Write R} for the set of rational strategy-type pairs. Inductively define R™ by

R™1 = R™N (S; x Bi(R™)).

Set R = (.51 R

Definition 6.3. The set of states at which there is rationality and m!"

(RmBR) is R™*! =[],.; R7™. The set of states at which there is rationality and common belief of
rationality (RCBR) is R = [[,.; R{°.

-order belief of rationality

6.2 The Unrestricted Inference Problem

The unrestricted inference problem is not our focus of interest. Nonetheless, it will serve as a useful
benchmark to think about the restricted inference problem.

In the unrestricted inference problem, the analyst observes the strategy played. But the analyst does
not observe the set of hierarchies of beliefs players consider possible, i.e., the relevant type structure 7. Nor
is the analyst prepared to make a substantive assumption about those beliefs. So, the relevant inference
question is: If the analyst observes s;, what is the maximum m so that s; is consistent with RmBR in
some type structure. Less formally, what is the maximum level of reasoning about rationality consistent
with observed behavior?

The answer to this question will depend on whether or not the observed strategy is m-rationalizable:
Set S? = S; and assume the sets S have been defined. A strategy s; is in S;"“ if and only if there
exists some v; € A(S_;) with s; € BR;[v;] and v;(S™,) = 1. The set S™ is the set of m-rationalizable
strategies for player i. The set S7° = (), .-, S;" is the set of rationalizable strategies for player i.

Proposition 6.1 (Known Result). Fiz an epistemic game (G, T).
(i) For each m > 1, proj gR™ C S™.

(i) If T is hierarchy-complete, for each m > 1, proj gR™ = S™.
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(iii) If T is hierarchy-complete, proj gR> = S.

See Brandenburger and Dekel (1987), Tan and Werlang (1988), Battigalli and Siniscalchi (2002), and
Friedenberg and Keisler (2021) for versions of this well-known result.

To understand how this result speaks to the unrestricted inference problem, consider two cases. First,
suppose the analyst observes s; € ST\SZ”H, i.e., the analyst observes the player choose a strategy that is
m- but not (m + 1)-rationalizable. Then the analyst concludes the behavior is consistent with, at most,
R(m —1)BR, i.e., m rounds of reasoning about rationality. In particular, s; is consistent with R(m — 1)BR
in a hierarchy-complete type structure (part (ii)), but is inconsistent with RmBR in any other structure
(part (i)).

Second, suppose the analyst observes s; € 57°. Then, s; is consistent with unbounded reasoning about
rationality. In particular, in any hierarchy-complete structure, there is a type t; so that (s;, ;) satisfies
RCBR (part (iii)).

6.3 The Restricted Inference Problem

In the restricted inference problem, the analyst is prepared to make the substantive assumption that
hierarchies of beliefs are generated by some anchor pu. Thus, the relavent inference question is: If the
analyst observes s;, what is the maximum m so that s; is consistent with RmBR in some level-k type
structure for u? One might think that the answer is tied to the level-k solution concept (for p). However,

as the next result indicates, it is not:

Theorem 6.1. Fiz an epistemic game (G, T), where T is a level-k type structure for .
(i) For each m > 1, proj gR™ C S™.
(i) If T is a complete level-k type structure for w, for each m > 1, proj gR™ = S™.

So, despite the fact that the analyst makes the substantive assumption that the hierarchies of beliefs
are generated by a particular anchor u, the nature of the inference problem is similar to the unrestricted
inference problem: If the analyst observes a strategy that is m-rationalizable but not (m+1)-rationalizable,
then the analyst concludes the behavior is consistent with, at most, R(m—1)BR in any level-k type structure
for p. In particular, s; is consistent with R(m — 1)BR in a complete level-k type structure for p (part (ii))
but is inconsistent with RmBR in any level-k type structure for g (part (i)).

Note, if the analyst observes s; € S, then the conclusion is more subtle. Part (ii) says that the
analyst cannot put a bound on reasoning about rationality, in the following sense: In a complete level-k
type structure for p, the strategy s; is consistent with RmBR for each m. That is, in a complete level-k

type structure, there are types t1,t2,... so that, for each m, (s;,#") € R™. (Note, in general, ¢/ will not
be an m-type.) However, this stops short of saying that s; is consistent with RCBR. In fact, it may not be

consistent with RCBR, as the following example indicates.

Example 6.1. Consider the game in Figure 6.1. Note, for each player Pi, b; is a best response under any
v; € A({a—;,b_;}), but a; is a best response under v; € A({a_;,b_;}) if and only if v;(a;) = 1. The entire
strategy set is rationalizable.

Consider now a level-k type structure for p, where each p;(a—;) < 1, and T = (S_;,T;,8; : i € I). We
will argue that there is no type t; € T; with (a;,t;) € R$°.
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Figure 6.1: RCBR in a Level-k Type Structure

Suppose, contra hypothesis, that there is an (a;,t;) € R°. Then, t;’s first-order belief §} (¢;) must assign
probability 1 to a_;. Write h; , = d; (t;). Type t;’s second-order belief 67 (¢;) must assign probability one to
(a—i,h'; ). Inductively, for each m > 1, type t;’s (m + 1)*"-order belief ST (;) must assign probability

SR ).

—i,a

one to (a_, hl_w, ..
Now, observe that, since 7T is a level-k type structure for p, there is some ¢ > 1 so that t; € Tf . Thus,
type t; has an ¢*"-order partial belief that corresponds to the anchor. But, this contradicts the fact that

61 (t;) = hf ,.”

6.4 Proof of Theorem 6.1

We now turn to prove Theorem 6.1. Part (i) is an implication of Proposition 6.1’s part (i). For part (ii) it
suffices to show the reverse inclusion. In particular, we show the following: If s; € S;", then there exists a
(m + 1)-type tzmH € Tierl so that (s;, t;”“) € R!™. The proof is by induction on m.

First, fix s; € S{. Then there exists some v; € A(S_;) such that s; is a best response under v;. There
exists ¢7 € T} such that marg g B;(t7) = v;. As such, (s;,t7) € R}.

Next, assume the result holds for m. Fix s; € SZ”H. Then there exists some v; € A(S_;) such that s;
is a best response under v; and v;(S™;) = 1. By the induction hypothesis, there is a mapping f™ : S™ —
T+ such that (s_;, f™(s—;)) € R™;. Construct &; € A(S_; x T_;) so that D;(s_s, f™(s_:)) = vi(s_i).
t;n+2)

In a complete level-k type structure, there exists some t?”z eT Z-m+2 such that S;( = 0;. Since

margsfiﬁi(tgnﬁ) = v;, (si,t™"%) € R!. Moreover, for each n < m, R"; is Borel (Lemma B.3) and

-1

Supp 5i(t;”+2) C R™ C R™,. So, t;”“ believes R", for each n < m. As such, (si,t;”“) € R;”H.

7 The Level-k Inference Problem

Theorem 6.1 raises the question: If we identify a subject as level m but not level n for n > m, what
can we infer about the nature of the subject’s reasoning? To address the question, we begin by providing
an epistemic characterization of the level-k solution concept. We then discuss what the characterization

means from the perspective of inferring reasoning about rationality.

7.1 The Level-k Solution Concept

Often, papers define the level-k concept relative to a specific game. Because we want to define the concept
for all (simultaneous-move) games, we introduce an abstract definition. We then discuss choices made in
adopting the definition.

9This paragraph is formalized in the proof of Proposition 5.2.
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Definition 7.1. Set L} = BR;[u;]. Assume the sets L have been defined. Let L™ be the set of

strategies s; so that there exists some v; € A(S_;) satisfying
(i) s; € BR;[v], and
(i) v (L™) = 1.

Say a strategy is level m (for p) if s; € L. Call the set LT as i’s level m behavior (for p) and call the
set L™ =]
(LY, 12,..).

ser Li* the level m behavior (for ). The level-k solution concept (for p) is the profile

The level-k solution concept exogenously fixes a profile of first-order beliefs g = (u; : ¢ € I), where p;
reflects i’s beliefs about the strategies others play. It then iterates best responses relative to those beliefs.
Level-1 behavior is the set of strategy profiles (s; : ¢ € I) where each s; is a best response under #’s anchor.
Level-2 behavior is the set of strategy profiles (s; : ¢ € I) where each s; is a best response under a belief

that assigns probability 1 to the level-1 behavior of other players. And so on.

Remark 7.1. Our definition allows for the fact that the sets LI* may not be a singleton. In fact, there
are prominent examples where the level-k solution concept has been applied, despite the fact that there
are multiple best responses. For instance, consider a 3-player beauty contest game (Ledoux, 1981; Nagel,
1995), where players simultaneously choose a number in {1,2,3,4,5}. A player wins if their choice is closest
to % of the average; they loose if some other bid is closer to % of the average. Ties split the win equally. If
the anchor assigns probability 1 to the arithmatic mean 3, then bidding either of 1 or 2 is a best response.

When there are multiple best responses, some papers assume players have a uniform belief over those
best responses. So, in the beauty contest example of the previous paragraph, a level-2 strategy must be a

1

best response under a belief that assigns 3 : % to 1: 2. This imposes a secondary exogenous restriction on

beliefs—but one that depends on iterative best responses. We discuss this point further in Section 9D.

7.2 Epistemic Foundations for Level-k

Theorem 7.1. Fiz an epistemic game (G,T), where T is a level-k type structure for p. For each player
i, fix covers C; = {T™ : m = 1,2,...} satisfying conditions (i)-(ii) of Definition 5.1 (resp. (i)-(ii)-(iii) of
Definition 5.2, if T is a complete level-k type structure).

(i) For each m > 1, proj g, (R{" N (S; x T{™)) € Lj*.
(ii) If T is a complete level-k type structure for w, for each m > 1, proj g, (R N (S; x Tj™)) = Li".

Much like Theorem 6.1, Theorem 7.1 fixes a level-k type structure for p. Refer to Figure 7.1. Whereas
Theorem 6.1 focused on the behavioral implications of R(m — 1)BR (Figure 7.1(a)), Theorem 7.1 focuses
on the behavioral implications of R(m — 1)BR for only the m-types (Figure 7.1(b)). Part (i) says that, if
the m-types engage in R(m — 1)BR, their behavior is level m (for ). Part (ii) adds that, in any complete
level-k type structure, any level m strategy for p is consistent with R(m — 1)BR for an m-type.

To better understand the theorem, fix a level-k type structure for g (not necessarily a complete level-k
type structure). A strategy is level 1 for p if and only if there is a 1-type t; so that (s;,t;) is rational.
(See Proposition B.1 part (i).) Note, this conclusion is stronger than that in part (i) and must only hold
for m = 1. In particular, a strategy s; may be level 2 for p even if there is no 2-type t; so that (s;,t;) is

consistent with R1BR. The next example illustrates this claim.
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Si

m-Rationalizable Level-m Behavior

(a) Projection of R(m — 1)BR (b) Projection of R(m — 1)BR and m-Types

Figure 7.1: Theorem 6.1 vs Theorem 7.1

Example 7.1. Refer to the game in Figure 7.2. Consider an anchor g = (1, p2) with each p;(c—;) = 1.
Observe that
L;n = {ai,bi} = Szm

for each m > 1. We next show that there is a level-k type structure for g so that (i) each m-rationalizable
strategy is consistent with R(m — 1)BR, but (ii) there is a level-k strategy for p so that some s; € L? is
inconsistent with R1BR for every 2-type.

P2
as bo Co
ai 1,1 0,0 1, -1
P1 b 0,0 1,1 1, -1
C1 —-1,1 -1,1 -1, -1
Figure 7.2

The type structure has type sets T; = {t;,v;} x N and belief maps that satisfy the following: First,
Bi(ti, 1)(c—i, (t-i,2)) = Bi(vi, 1)(c—is (v—i,2)) = 1 and B;(ts,2)(a—, (t—i,1)) = Bi(vi, 2)(a—i, (v—i,1)) = 1.
Second, S;(t;,3)(a—s, (t—i,2)) = Bi(vi,3)(c—4, (v—s,2)) = 1. Third, for each m > 4, B;(t;,m)(a—;, (t—;,m —
1)) = 6i(vivm)(b—iv (v—ia m — 1)) =1L

Note, this is a level-k type structure for p associated with covers C; = {{t;,v;} x {m} : m > 1}. For
each m, proj g R = {a;, b;}. However, proj g, (R? NT?) = {a;} C LI".

Example 7.1 features a “rich” level-k type structure, in the sense that there are enough beliefs so that all
the m-rationalizable strategies are consistent with R(m — 1)BR. Thus, for this specific type structure, part
(i) of Theorem 6.1 can be strengthened from inclusion to equality. Despite the type structure being rich
in this sense, it does not have a rich set of 2-types. As a consequence, there are level-2 strategies that are
inconsistent with R1BR for each 2-type. Part (ii) of Theorem 7.1 implies that, when there is a “rich” set
of 2-types (in the sense of the requirement associated with a complete level-k type structure), any level-2

strategy is consistent with R1BR for some 2-type.
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While a complete level-k type structure features a sufficiently “rich” set of 2-types, 3-types, etc., it is
important to note that it does not induce a rich set of beliefs: In particular, we saw that a complete level-k

type structure cannot induce all hierarchies of beliefs.

7.3 Identifying Levels of Reasoning about Rationality

Suppose the analyst observes a player choose some strategy si so that (i) si is level m > 1 (for p), but
(ii) s7 is not level n (for @) for any n > m. What can the analyst infer about how the player reasons about
rationality? We first address the question in the context of the unrestricted inference problem, then in the
context of the restricted inference problem, and finally in the context of Theorem 7.1. To do so, we use
the following (well-known) fact: If s} is level m then s} is m-rationalizable. (See Lemma B.4.)

In the unrestricted inference problem, the analyst only observes the strategy s; and the analyst is not
prepared to make an assumption about the hierarchies of beliefs that players consider possible. Since s
is level m, the analyst concludes that s} is consistent with R(m — 1)BR in some type structure. Because
an (m + 1)-rationalizable strategy need not be level-(m + 1), the strategy s} might well be consistent with
RmBR in some type structure, even though it is not level-(m 4 1) for p. The analyst can only conclude
that s} is inconsistent with RmBR if the strategy is not (m + 1)-rationalizable. This is an implication of
Proposition 6.1.

In the restricted inference problem, the analyst is willing to make a substantive assumption about the
players’ beliefs:

Identifying Assumption 1. There is some anchor pu and some n > 1 so that the player who chose s

has the beliefs associated with an n-type in a level-k type structure for .

Theorem 6.1 implies that, despite this identification assumption, the nature of the inference does not
change: The analyst can conclude that sf is consistent with R(m — 1)BR, but cannot rule out that it is
also consistent with RmBR, unless s} is also fails (m + 1)-rationalizability.

Theorem 7.1 suggests a stronger conclusion, based on an additional auxiliary assumption above As-

sumption 1:

Identifying Assumption 2. If a player is an n-type in some level-k type structure for w, then the player

reasons according to R(n — 1) BR.

Under Assumptions 1-2, the analyst can conclude that s} is consistent with R(m — 1)BR and inconsistent
with RnBR for any n > m: Since, for each n > m + 1, s} is not level n (for p), there is no level-k type
structure (for p) and n-type thereof, ¢;, so that (s}, ¢;) is consistent with R(n — 1)BR. (This uses Theorem
7.1.) Then, the identifying assumptions rule out that the behavior s} was generated by a player that
reasons according to RmBR, a fortiori RnBR for any n > m.

It is worth emphasizing the nature of this approach to identification, especially relative to standard
critiques in the literature. It is understood that the level-k approach implicitly assumes that behavior is
generated by subjects who have (partial) beliefs (of some order) induced by an anchor. This assumption fits
with Assumption 1 and has itself received criticism. (Refer back to page 4.) The analysis here highlights the
importance of Assumption 2, above and beyond Assumption 1. A generous interpretation of Assumption

2 is: If subjects hold partial nt"-order beliefs consistent with the anchor, then they reason according to
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R(n — 1)BR.'° This is an assumption that a player’s n!"-order beliefs determine the extent to which the

player reasons about rationality—an assumption that would be hard to falsify or verify in practice.

Remark 7.2. This section asked: What can the observer infer about how a player reasons about rationality,
if they observe a strategy that is level m but not level n for any n > m. It is worth emphasizing that
if behavior is consistent with reasoning about rationality beyond level m, then it is also consistent with
other forms of reasoning beyond level m. For instance, it would be consistent with unbounded interactive
reasoning—i.e., statements of the form “I think, you think, etc....” In some games (including games of

substantive interest), it is also consistent with reasoning about irrationality beyond level m.

8 Applications

The level-k model has served as an important lens through which experimentalists have evaluated bounded
reasoning. This section revisits three prominent games—each studied broadly in the experimental literature—
through the lens of Theorem 6.1. It argues that, even when the hierarchies are generated by the anchors
that the experimental literature has focused on, the observed behavior is often consistent with higher levels

of reasoning about rationality.

8.1 Beauty Contest

The beauty contest game was initially studied by Ledoux (1981) and Nagel (1995). Each of |[I| > 3
players compete for a prize, whose value is 1. They do so by simultaneously choosing a number s; €
{z,z + A,...,z + kA}, where x > 0, A > 0 and x > 1 is an integer. Player i is a winner if her chosen
number best matches a fraction p € (0,1) of the average strategy chosen. That is, given a strategy profile

s =(s;: j € I), the set of winners is

Wi(sj:jel)={iel: |s7;7%25j| < |547%25j| for each ¢ € I}.
Jjel jeI

Player i’s payoff function is given by

wey i€ W(s)

mi(s) = .
0 otherwise.

As an example, suppose |I| = 3, the set of strategies is {0,1,2,3,4,5}, and p = % Consider an anchor
1, where each y; is uniform. Given this anchor, player i’s expected payoff is maximized by choosing 1.!!
Thus, L} = {1} and, for each m > 2, L™ = {0}. Yet, even if players’ hierarchies of beliefs are generated
by the uniform anchor, observing s; € {1,2,3,4} is consistent with a higher bound on reasoning about

rationality. To see this, note that, for each m > 1,

{0,...,5—m} if5>m

S =
{0} if m > 6.

10This is indeed generous. In particular, n-types are associated with partial nt"-order beliefs consistent with the anchor,
but the partial n*?-order beliefs do not uniquely determine whether a type is an n-type.

11 The expected payoff from 1 is approximately .65, which is higher than the expected payoffs of the other strategies: for 0
it is .31, for 2 it is .62, for 3 it is .31, for 4 it is .09, and for 5 it is .01.
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So, even if players beliefs are generated by the anchor, an observation of s; = 2 (resp. s; = 1) is consistent
with RIBR (resp. R2BR).

The particular parameterization of the game is important for understanding the extent to which be-
havior in the beauty contest can indicate bounded reasoning. (Again, even if the beliefs are generated by

an anchor.) To see this, set
) A(1] = 2p)
(I, Ap) = ———.
88 =50 )

Seel and Tsakas (2017) show that, for each m > 1, the m-rationalizable strategies take the following form:

gm {z,...,.24+(k—m)A} ifx>mandz+ (k—m+1)A>Z(I,A,p)

?
st otherwise.

To understand the characterization more fully, focus on two extremes. First, suppose z + kA <
Z(I,A,p). (This will, for instance, be the case when the actions are {0,1,2,3,4,5}, p = .95, and |I| > 4.)
In this case, any strategy is consistent with R1BR, R2BR, R3BR, etc. . ., in a complete level-k type structure
(for p). Second, suppose that x + A > #(I, A, p). In that case, player i always wins the full prize, if the
other players choose the same action and player i undercuts the other players by A. So, all but the highest
strategy is 1-rationalizable; all but the top two strategies are 2-rationalizable, etc. As such, in a complete
level-k type structure (for p), a strategy  + AA may be consistent with R(m — 1)BR even though there
is no n > m so that x + AA is categorized as level n (for w).

In experiments, the grid size is often small relative to p and |I|. More concretely, we can think of a
player’s strategy set as a finite subset of [0, 00), with a lowest strategy of z and a highest strategy of T > x.
Then, kA represents the bound on the available strategies, i.e., kA = T — z. Experiments typically set
T — x and implement a fine grid; this is captured by A small and x high. (See the discussion in Section
9F for a formalization.) With a fine grid, rationalizability results in eliminating strategies “slowly.” For
example, take |I| = 3, p = %, and [z,T] = [0,1] with a grid given by (A, k) = (%,n) When n = 2,
S; = % is not 2-rationalizable. But, s; = % is 2-rationalizable when n = 100; in fact, it is 49-rationalizable.
Contrast this with the level-k classification, where the anchor is taken either to be uniform or to assign
probability 1 to the arithmetic mean.'> When the anchor assigns probability 1 to the arithmetic mean y,
behavior above (the grid member closest to) p x y is categorized as “irrational” or “unsophisticated” and
behavior just below is categorized as reflecting exactly 1 level of reasoning. In the example, behavior above
% is viewed as irrational (irrespective of the grid); in fact, when n = 100, behavior above .35 is viewed
as irrational. Notice, when the grid is fine, behavior viewed as irrational or reflecting exactly 1 level of
reasoning is, in fact, consistent with high levels of reasoning about rationality—even when the hierarchies
are generated by the same anchor. Section 9F discusses an additional reason that level-k classification may

underestimate the extent to which there is bounded reasoning, in the fine-grid beauty contest.

I2These are different in practice. See Breitmoser (2012).
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8.2 Guessing Games

An important variant of the beauty contest is a guessing game, first studied in Costa-Gomes and Crawford

(2006). These games differs from the beauty contest in that their payoff functions are now

2

. p
’/Ti(SjIJGI):B* Si*|l‘_1lz‘sj s
jel\{i

where B > 0 and p € (0,1).13 So, each player i seeks to minimize the distance to their expectation of the
target.

There are two strategic differences from the beauty contest. First, the target only depends on the
average behavior of the other players and is not impacted by a player’s own choice. Second, now, player @
has a direct incentive to match the target; because the target depends on p, player ¢ may have an incentive
to choose a strategy that is significantly lower than their expectation of the average strategy. (See Lemma
C.4.) By contrast, in the beauty contest, player ¢ only has an incentive to be the player closest to the target;
this is an indirect incentive to match the target, which can, in principle, be met with higher strategies.

To see the implication of these new incentives, suppose |I| = 3, the set of strategies is {0, 1,2,3,4,5},
and p = % Consider an anchor p, where each p; is uniform. Now, L! = {2} and, for each m > 2,
L™ = {1}. (Notice, L? = {1} precisely because a player’s own action doesn’t impact the target.) Yet, even
if players’ hierarchies of beliefs are generated by the uniform anchor, observing s; € {0, 2,3} is consistent

with a higher bound on reasoning about rationality. To see this, note that, for each m > 1,

{0,1,2,3} ifm=1
Sm=1<40,1,2}  ifm=2
{0,1} if m > 3.

So, even if players beliefs are generated by the anchor, an observation of s; = 2 is consistent with R1BR
and an observation of s; = 0 is consistent with RmBR for all m > 1.

The m-rationalizable strategies are given by
St ={z,...,z+ J(m)A},

where J:0,1,2,... = {0,...,x} is a weakly decreasing function satisfying the following criteria:
(i) J(0) = &;
(ii) J(m+1) < J(m) if J(m) > 1 and x + J(m)A > 2(A,p) := ﬁ; and
(iii) J(m + 1) = J(m) otherwise.

As the example indicated, J(m + 1) can be strictly less than J(m) — 1, i.e., on any given round more than
one strategy can be eliminated. (In the specific case where x + kA € (Z(A,p), 3%(A, p)], rationalizability
begins by eliminating the highest strategy on each round, until some round m where the m-rationalizable

strategies stop shrinking. See Appendix C.)

13There are variants based on the distance between s; and P/(\I\—l)zjel\{i} s;, as measured by the absolute value. A
similar discussion applies to those variants.
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In experiments, the grid size is small relative to p. In that case, rationalizability involves eliminating
more than simply the highest strategy. But, the anchor is typically taken to be uniform or to assign
probability 1 to the arithmetic mean. For these anchors, the highest 1-rationalizable strategy is typically
higher than the highest level 1 strategy, despite the fine grid. Lemma C.4 points to why. For instance, take
[z,Z] = [0,1] with a grid given by (A,, k,) = (1, n); again, a fine grid corresponds to n > 1 large. When
the anchor is uniform, a player’s best response is to choose the strategy (in the grid) closest to £. But,
when the grid is fine, there are 1-rationalizable strategies in (%, p); in fact, when p > % and the grid is fine,
there are 2-rationalizable strategies in (g, p?), etc. So, even when hierarchies are generated by the uniform
anchor, behavior classified as level 0, level 1, etc., may be consistent with higher rounds of reasoning about

rationality.

8.3 11-20 Game

This game was initially studied in Arad and Rubinstein (2012). Two players simultaneously choose a
number in {11,12,...,20}. In the original version of the game (Arad and Rubinstein, 2012), payoff functions
are given by

si+20 ifs_;=s;+1

Wi(sz', 84) = .
S; otherwise.

Alaoui and Penta (2016) propose a version where the payoff functions are given by

mi(si,5—) = s +10 ifs_;=s;

S; otherwise.

Notice, in both versions, each strategy s; € {11,12,...,19} is a best response to s_; = s;+1. In the original
version (Arad and Rubinstein, 2012), s; = 20 is a best response to s_; = 11; in the revised version (Alaoui
and Penta, 2016), s; = 11 is a best response to s_; = 11. Note that these differences are a deliberate
feature of the design, both in Arad and Rubinstein and in Alaoui and Penta.

The two games are different from the perspective of the level-k concept. To see this, consider an anchor
with each 1;(20) = 1. (See point (i) on page 3563 of Arad and Rubinstein on why this is a natural anchor.)
In both games, for each m = 1,...,9, L™ = {20 — m}. In the original version of the game L} = {20} and
the levels cycle. As a consequence, the initial version of the game, a strategy classified as level m > 1 if
and only if it is classified as level £ + m for ¢ € {10,20,30,...}. But, in the revised version of the game,
L™ = {11} for each m > 10.

The two games do not differ from the perspective of rationalizability. In particular, an important and

deliberate feature of the design is that the entire strategy set is rationalizable.!* (In Alaoui and Penta’s
version, 20 is a best response under a belief that assigns % : % to 11 : 20.) As a consequence, even in

players’ hierarchies are generated by an anchor that assigns probability 1 to 20, every strategy is consistent
with RmBR for all m > 1.
For the original version of the game, the classification from the level-k model cannot overestimate a

bound on reasoning: Any strategy is consistent with unbounded levels of reasoning according to the level k

1See point (vi) on page 3563 in Arad and Rubinstein on why this is desirable.
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model. (For this reason, Arad and Rubinstein are careful to only draw conclusions about a bound when the
subjects’ own explanations allowed them to do so.) The conclusion is different for the revised version of the
game. When the anchor assigns probability 1 to 20, the level-k model suggests the strategy 20 —m > 12
has a bound of at most m. Nevertheless, all strategies are consistent with unbounded reasoning about

rationality, even when the hierarchies are generated by the anchor.

9 Discussion

A. Complete Level-k Type Structures and Hierarchies Consistent with the Anchor One
might conjecture that a complete level-k type structure for p induces all hierarchies of beliefs consistent

with the anchor. However, this is not the case. We begin with an example.

Example 9.1. Consider a two-player game where each S; = {0;,<;}. For each player i, there is a
hierarchy of beliefs h; o = (h}yD , hfyu, ...) where it is commonly believed that the other player chooses O_;:
So, hz{D(D,i) =1 and h;’gl(D,i7 <oy h o) = 1. Also, for each player 4, there is a hierarchy of beliefs
hi = (h},h2,...) with h}(O_;) = 2, h"*N(O_;, ... k™ o) = 2, and A" (O, h™ ) = 5. (So, h?
assigns probability % to “the other player plays O_; and believes I play 0,7 and probability % to “the other
player plays ¢_; and believes I play 0,.”)

Now consider an anchor g = (u1, u2) where, for each 4, p;(0_;) = % Note, that h; is a hierarchy of
beliefs consistent with the anchor, since h} = p}7 - However, there is no level-k type structure (including
a complete level-k type structure) that induces the hierarchy h; = (h}, hZ,...). We give the intuition why
here and complete the proof in Appendix D.

Fix a level-k type structure for p = (u; : ¢ € I) and, for each i € I, let C; = {T/* : m = 1,2,...}
be a Borel cover so that (C; : ¢ € I) jointly satisfy conditions (i)-(ii) of Definition 5.1. Suppose, contra
hypothesis, there exists some type ¢; € T; with ;(¢;) = h,;. Then, there must exist some type t_; o € T_;
with d_;(t_;0) = h—;o. (See Lemma D.1.) But, there is no such type t_; o € T_;. (See Lemma D.2.)
Intuitively: The 1-types have first-order beliefs distinct from h}ﬂ. Since the 2-types must assign probability
1 to 1-types, this implies that the 2-types have second-order beliefs distinct from h%’D. And so on.

The example points to a more general phenomena. A level-k type structure (a fortiori, a complete
level-k type structures) cannot induce hierarchies of beliefs where the first-order beliefs coincide with
the anchor and higher-order beliefs assigns positive probability to beliefs that are inconsistent with the
anchor. As a consequence, it also cannot induce hierarchies of beliefs that assign positive probability to
such hierarchies. Etc. Put differently, level-k type structures (a fortiori, complete level-k type structures)
impose the substantive requirement: Not only are players beliefs consistent with the anchor, they believe

other players’ beliefs are consistent with the anchor, etc.!® As a consequence:

Proposition 9.1. Fix a non-degenerate anchor w, t.e., an anchor where no player assigns probability 1
to a strategy profile. If T is a level-k type structure for p, then T does not induce all hierarchies of beliefs

consistent with .

One might instead hope for the following: If a hierarchy can be induced by a level-k type structure for

1, then any complete level-k type structure must also induce that hierarchy. However, a close inspection

150f course, one might want to impose this substantive requirement. The literature is, arguably, silent on whether this is
desired.
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of Definition 5.2 indicates why this need not be the case. While a complete level-k type structure requires
a rich set of 2-types, 3-types, etc., it does not require a rich set of 1-types.

The proof of Proposition 5.3 constructs a particular complete level-k type structure 7* = (T, 85 : i € I)
that does have a rich set of 1-types: For every belief v; € A(S_; x T*;) with marg g_.v; = p;, there is a
1-type in T;* with 5] (t}) = v;. For this reason, any hierarchy of beliefs that can be induced by a countable
level-k type structure can be induced by the constructed complete level-k type structure. Appendix A.4
discusses the technical difficulty in extending the result to any level-k type structure.

B. Complete Level-k Type Structures and Inference We saw that a complete level-k type struc-
ture need not induce all hierarchies of beliefs consistent with the anchor. Despite this, from the perspective
of inferring the level of reasoning about rationality, it suffices to focus on level-k and complete level-k
type structures. To understand why, recall that in any type structure, the set of strategies consistent
with R(m — 1)BR must be contained in the m-rationalizable strategies. (Refer to Proposition 6.1(i).)
The same holds if we replace “any type structure” with “any hierarchy structure” (i.e., any belief-closed
subset—or even any subset—of hierarchies of beliefs). Since any m-rationalizable strategy is consistent
with R(m — 1)BR strategy in a complete level-k type structure (Theorem 6.1(ii)), the focus on complete

level-k type structures is without loss of inference.

C. Definition of Level-k Type Structures A level-k type structure (Definition 5.1) requires that,
for each player i, we find a cover that satisfies two properties. It does not require that the associated covers
be unique. Indeed, they may not be; see Example D.2. It also does not require that the cover is a partition.
Indeed, they may not be; see Example D.1.

A complete level-k type structure (Definition 5.2) is associated with covers that satisfy three criteria.
While these covers need not be a partition, the construction of a complete level-k type structure in Propo-
sition 5.3 does involve partitional covers. We do not know if adding a partitional requirement imposes

substantive assumptions.

D. Definition of the Level-k Solution Concept Definition 7.1 allows for the fact that there may
be multiple best responses to a given distribution on strategies. This is not simply a theoretical possibility
but a feature of important level-k analyses. As pointed out in Remark 7.1, some papers instead assume
that players have a uniform belief about best responses. This imposes a secondary exogenous restriction on
beliefs—one that depends on iterative best responses. This additional restriction only serves to reinforce
the message of the paper: It gives a level-k bound that is lower than that suggested by Definition 7.1. As
such, this choice may suggest lower levels of reasoning about rationality than is consistent with the data.

Theorem 7.1 can be seen as providing foundations for this level-k solution concept, as specified by
Definition 7.1. From the perspective of foundations, it is important that we focus on this generalized
level-k solution concept. The epistemic approach takes, as given, the set of hierarchies of beliefs players
consider possible (i.e., a type structure); it then goes on to impose epistemic conditions relative to those
hierarchies (i.e., RmBR is applied relative to a type structure). The restriction to a uniform belief over
best responses proceeds in the opposite direction: It derives first-order beliefs based on best responses (to
other beliefs).
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E. Foundations for Level-k Theorem 7.1 provides epistemic foundations for the level-k£ solution
concept. These foundations are quite different from foundations for other solution concepts: The typical
approach (in epistemic game theory) will simply say whether a hierarchy of beliefs is or is not consistent
with a particular epistemic assumption. By contrast, the foundations here rest on associating different
hierarchies of partial beliefs with different epistemic conditions. In doing so, it allows the researcher to
make different epistemic assumptions (i.e., RIBR, R2BR, etc...) based on different hierarchies of partial
beliefs. It is this property that leads leads to the difficulty with identification discussed in Section 7.3.

The foundations are cast in a typical epistemic framework, where types are associated with hierarchies
of beliefs. This approach describes players as actors that do not face limitations on their ability to engage
in interactive reasoning—i.e., their ability to specify all sentences of the form “I think that you think that
I think ....” Often, the level-k solution concept is motivated by a stipulation that players have a limited
ability to engage in such sentences. Theorem 7.1 indicates that this stipulation is not needed—that the
level-k solution concept does not require limits on the ability to engage in interactive reasoning.

Our framework is expressive beyond what might appear to be needed for certain results. But there is
no sense that the additional expressiveness interferes with the conclusion of the results. The key is that the
epistemic conditions of RmBR depend only on the (m + 1)t-order beliefs.'® Tmportantly, this conclusion
remains true even if the epistemic model contains types that consider the possibility that other players “do

not reason” (as in Heifetz and Kets, 2013 or Kets, 2010). See Appendix D for a formal statement.

F. Fine Grid: Beauty Contest Return to the beauty contest. One might have thought that a fine
grid uses a special structure that brings the sets of level-k and rationalizable strategies into close (or even
exact) agreement. If this were to happen, it would weaken the import of our results. But this is not the
case. Section 8.1 already pointed to the fact that a fine grid can exacerbate the extent to which the level-k
classification underestimates reasoning. Here we see a second issue: In any fine-grid beauty contest game,
there may multiple rationalizable strategies. So, even when hierarchies are generated by a given anchor,

there may be multiple strategies that are consistent with unbounded reasoning about rationality.

Example 9.2. Suppose |I| = 10 and p = .9. Choose the strategy set so that [z,Z] = [0,1] with a grid
1

rationalizable strategies if and only if k,, —m > 4. When A, is small, k,, is large. Thus, we can find an m

given by (A, kn) = (+,n). Then, the m-rationalizable strategies will be a strict subset of the (m — 1)-

so that 4 > k,, —m > 1. In that case, the set of rationalizable strategy profiles is not a singleton.

In the limiting case, where each S; = [z, T], the set [z, T) is contained in the rationalizable strategy set for
i. (This is irrespective of I and p.) See Appendix D 4.

To understand why this occurs, consider a sequence ((kn,A,) : n > 1) so that, for each n > 1,
z + kA, = T and lim, oo A, = 0. Then, for each € > 0, there exists N(e) > 1 so that A, < ¢
for all n > N(eg). A e-fine grid represents a grid with (k,A) = (kn, Ay) for some n > N(eg). In the
beauty contest, for any m > 1, there is a e-fine grid so that the set of m-rationalizable strategies is strictly
contained in the set of (m — 1)-rationalizable strategies. (See Appendix D.4.) But this stops short of saying
that there is a € > 0 so that, for any € > £, there is a unique rationalizable strategy for a game with a

e-fine grid. In fact, that may not be the case, as indicated by the example.

16This can be seen by recasting standard results in hierarchy spaces.
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10. Conclusion

This paper takes seriously the idea that players’ hierarchies of beliefs are shaped by an anchor, the key
assumption associated with level-k models. Toward that end, it focuses on type structures that capture
the substantive assumptions that hierarchies are induced by an anchor. In a sense, complete level-k type
structures don’t impose (needless) auxiliary assumptions on beliefs, above and beyond the requirement that
hierarchies are induced by an anchor. So, by analyzing RmBR in a complete level-k type structure, we
capture the reasoning (or “cognitive”) process typically associated with the the level-k model. Nonetheless,
Theorem 6.1 shows that this reasoning process has less predictive power than the level-k solution concept;
it has the same predictive power as rationalizability.

Theorem 7.1 points to a reasoning process that has the predictive power of the level-k solution concept.
But, the same result points to a new identification assumption—one that challenges the ability to infer
a “level of reasoning” from the fact that behavior is classified as some level m. Do there exist alternate
assumptions about beliefs—assumptions that are testable—which would allow the researcher to infer a
subject’s “level of reasoning” from the fact that behavior is classified as level m? Note, such assumptions
would go above and beyond that discussed in the level-k literature. As such, this is a question for future

research.

Appendix A Proofs for Sections 4-5

A.1 Type Structures Induce Hierarchies of Beliefs

Fix a type structure 7 = (S_;, T;, 8; : € I). We will inductively define measurable maps pJ* : S_; xT_; —
X™ and 6" : T; — H™. First, set p} = projg . and &} = B; o ;. Note, p! is measurable and so B} is
measurable. From this and the fact that §; is measurable, §} is measurable.

Now, assume the measurable maps p]* : S_; x T_; — X[ and §;" : T; — H]" have been defined. Set
PP (s to) = (1 (5. 122). 07 (1),

Note, since pf* and 6™, are measurable, so is p["**. Then set 6" = B;"‘H o f3;. Since p/"*! is measurable
m—+1

i
The following standard lemmata will be of use.

and so p is measurable. From this and the fact that (5; is measurable, 6;'”'1 is measurable.

Lemma A.1. For each t; € T}, 6} (t;) = marg g_,Bi(t;).
Proof. Fix some s_; € S_;. Note,
8 (t:)(s—i) = Bilts) ((pi) ™' ({s=i})) = Bilts) (S—i x T-),
as desired. m
Lemma A.2. For each m > 1, 6™ (t;) = marg yvm 0"t (¢;).

Proof. Fix some Borel E/* C X". Note that

G () (") = Bi(t) (07" HE)) = Bilta) (o] ™) THET x HITy)) = o7 () (B x HT),
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as required. m

Lemma A.3. For eachm > 1, p" ™ (s_;,t ;) = (s_i, 6L, (t_i), ., 6™ (t_1)).

Proof. For m = 1, this is immediate. Assume the statement is true for m > 2, so that pm+1(s,i7t,i) =
(54, 0L, (t i)y, 0™ (t—)). Then, p" ™2 (s s, t_;) = (5_i, 61, (t_s)s ., 6™ (t_s), 8" (t_1)), as desired. m

A.2 Proof of Proposition 5.1

Fix a level-k type structure for pp = (p; : @ € I) and, for each ¢ € I, let C; = {T)" : m = 1,2,...} be a
Borel cover so that (C; : i € I) jointly satisfy conditions (i)-(ii) of Definition 5.1. The following Lemma will
establish Proposition 5.1.

Lemma A.4. For each m > 1, n*(6;7"(T]")) € {pi",}

Proof. The case of m = 1 is immediate. Assume the claim holds for m > 2. Fix some t; € Tierl and
write A"t = 6t (t;). We will show that 5" ™! (R" 1) = pzllj'l.
To see this, fix
Fro={p™ ) € P =Y

and observe that F™. is measurable. Note, n" ™' (h" ™) = p;”;l if and only if n" ™ (R TY)(F™) = 1

Observe
nt R (FT) = RPN THED))
= h;n+1 ({( T’whm) € Xierl : nzm(hTz) = p:ni,u}) .
Thus,
n R (FT) = P ETY,

where

E;W‘Fl Xm X H 773 {pgy, ) Xl"m+1'
JFi

As such, it suffices to show that h;”H(EimH) =1.
To show this, first observe that

S_i X T C () (EPH),
To see this, fix (s_i,t—;) = (s,t; : j #4) € S_; x T™. By the induction hypothesis, 77" (67" (¢;)) = p}’,,.
Thus, p" ™ (s_i,t_;) € E"', as stated.
Now note that

BB = Bi(t) (o) THER ) 2 Bult) (S x T = 1,

where the inequality follows from the fact that S_; x T™ C (p" ™)~ (E*!) and the last equality follows
from the fact that ¢; € 7;"'. From this, A" (E"™!) = 1 as desired. m
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A.3 Proof of Proposition 5.2

Fix a level-k type structure for p, viz. 7 = (S_;,T;, B; : i € I). For each i € I, write C; = {T},T?,...}
for Borel covers of T; that jointly satisfy conditions conditions (i)-(ii) of Definition 5.1. We will show that
T is not hierarchy-complete. To do so, we construct an alternate type structure and show that it induces
hierarchies of beliefs that are not induced by 7.

Consider an alternate type structure 7* = (S_;, T, 8} : i € I) so that, for each i, T} = {t}} and
marg g A7 (tf) = p; where p; € A(S—;) so that p; # p;. Write 6;"™ : T — H!™ for the mapping from the
type tf to the m!"-order belief and, similarly, write 87 : T — H® for the mapping from the type tf to
the associated hierarchy of beliefs. Observe that, for each s_; € S_;, 5t

T () (s—i) = pi(s—;). Moreover,
for each m > 2, each s_; € S_;, and each Borel E™ ' C H;”;ll Hr

(3

i

pi(s—i) lf (5*—711(tiz)7 e 76i7:n_1(t*77,)) S ETi_l

5 () {s—i} x BTN =
0 otherwise.

Write
Hi(t7) = {ti € Ti : 6;(t:) = 67 (t7)}.

for the set of types t; € T; that induce the same hierarchies of beliefs as 7. Similarly, write

H'(t7) = {t: € Ty« 67" () = 6™ ()}

K3 K2

for the set of types t; € T; that induce the same m"-order beliefs as ¢;. Of course,

H(t7) = () H'().
m>1

Suppose, contra hypothesis, that 7 = (S_;,T;,8; : ¢ € I) is hierarchy-complete. Then, for each i,
H;(tf) # 0. Because T is a level-k type structure, there exists a map N; : H;(t7) — N4 so that (i) for
each t; € H;(t), t; € TiNi(t"'), but (ii) if N;(t;) > m > 1, then ¢; & T". Observe that N;(t;) > 2, since
t; € Hy(t;) implies 6] (t;) = p; # pi- (See Lemma A.1.) Choose a profile of types (t; : i € I) € [[,c; Hi(t)
so that, for each player 4, there is no w; € H;(tF) with N;(u;) < N;(t;). Without loss, suppose i = 1 is a
player with N := Ny (t1) < N;(¢;) for all i € I. Thus,

TN () HI(E) = TN 0 H G (#,) = 0.

m>1

We will use this fact to show that d1(¢1) # 07 (¢]), contradicting that ¢; € Hy (¢7).
Suppose, contra hypothesis that, for each m, §7*(t1) = ;""" (¢}). Let

FIh = {(029(t7y), . 657 (t5))

and observe that the set is Borel. (Note, F™™ ! is the set of n = 1,..., (m — 1)"-order beliefs of players
i € I\{1} that is induced by 7*.) It follows that, for each m > 2,

07 (t1)({s—1} x FI71) = pi(s-1).
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By construction of the maps 67" and the fact that, for each m > 2, §7*(t1) = 67" (¢}), it follows that

Bi(t1)({s—1} x HITH(t24)) = pa(s1)

for each m > 2. But, by construction, 81 (t;)({s_1} x T™ ') = p(s_1). So, for each m > 2,

Bultr) ({s—1} x (HITH(tL) NTHTY) = pa(s—a).

Observe that, for each m > 2, H™ (t*,) € H™ *(t*,). (See Lemma A.2.) Thus,

Bu(tr) {{s—a} x (Y HITHE)NTTY) | = lim fi(t) ({s—a} < (HIZTH(E5,) N THY)

m>2

=p1(81)-

However,

N E ) n T ) =0

m>2

and, so, for each s_q,

Brlty)({s—1} x [ (HZ () N T ) = 0.

m>2

Thus, for each s_1, p1(s—1) = 0, a contradiction.

A.4  Proof of Proposition 5.3

Construction of a Complete Level-k Type Structure For each integer m > 1, let 7."™ = [0,1] x
{m}. Set T} = J,,>, I;"™. Endow T;"™ with a metric d : T} x T} — R so that d((z;,m;), (x¢,me)) =

lz; — z¢|| it mj =myg and d((xj,m;), (ze, me)) = 2 if m; # my.
Lemma A.5. Then (T},d) is a Polish space.

Proof. Let D,,, = (QN[0,1]) n{m} and note that each D,, forms a countable dense subset of [0, 1] x {m}.
Then set D = {J,,cz(Dm x {m}). The set D is countable. It is also dense in T}*. (This follows from the
fact that each open set in T must either be an open set in [0, 1] x {m} or a union of such open sets.)
Thus, (T7,d) is separable.

Next observe that, for any Cauchy sequence ((z;,m;) : j = 1,2,...), there must be some J so that

m; = my for all j > J. Thus, any Cauchy sequence converges and (T}, d) is complete. m
Lemma A.6.

(i) There exists an injective bimeasurable map x} : TS'' — A(S_; x T*;) so that x/(T;"") = {v; €
A(S_; xT*;) :marg g v; = i3}

(ii) For each m > 2, there exists an injective bimeasurable map X7 : T;"™ — A(S_; x T*,) so that
XPUTE™) = {vi € A(S—y x T*,) 1 v(S—y x T 1) = 1}.

K2

Proof. For part (i), begin by noting that both TZ*1 = [0,1] x {1} and A(S_; x T*,) are uncountable
Polish spaces. (The latter follows from Lemma A.5.) Since {v; € A(S_; x T*;) : margg_,v; = ju;} is a
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closed subset of A(S_; x T*,), it too is Polish. (See Aliprantis and Border, 2007, pg. 74.) Moreover,
{vi € A(S_; x T*;) : marg g_ v; = p1;} is uncountable. So, the claim follows from the Borel Isomorphism
Theorem.

For part (ii), fix m > 2. Note that both ;"™ and A(S_; x T™~"*) are uncountable Polish spaces. So, by
the Borel Isomorphism Theorem, there exists a bimeasurable bijective map X7 : T."™ — A(S_; x Ti"fl’*).
Also note that there exists an injective bimeasurable map ¢™ : A(S_; x T %) — A(S_; x T*,) so that

GPAS- x TITH)) = vy € A(S—i x T%,) : vi(A(S—i x T 1)) = 1}

Thus, zﬁlm o X7 is an injective bimeasurable map that satisfies the desired property. ®

For each i, let B8] : T — A(S_; x T*,) be defined so that §;(z,m) = x7*(x,m). Note, under this
construction, B; is not injective. But, if there exists (z,m) # (z/,m’) with 8 (z,m) = B¥(2/,m’), then
either (i) (z,m) € [0,1] x {1} and (z/,m’) € [0,1] x {1} or (ii) (2’,m') € [0,1] x {1} and (x,m) & [0,1] x {1}.

Lemma A.7. The map 3] is bimeasurable.

Proof. Fix a Borel E C S_; x T*,. Since each x is measurable, each (x)~¢(E) is Borel. Now observe
that

BHHE) = ) T(E)

m>1

is Borel. Thus, 38} is measurable.
Likewise, fix a Borel E C T7*. Since each x!™ is bimeasurable, each x"(E N7T;"™) is Borel. From this

piE) = U EnT™)

m>1

is Borel. Thus, 3] is bimeasurable. m

Using Lemmata A.5-A.7, T* = (TF,Bf : i € I) is a type structure with Polish type sets. Let p;™ :
S_;x T*;, — X™ (vesp., 6;"™ : T} — H!™) be the map from strategy-type pairs to the m!-order space of

uncertainty (resp. be the map from types to m**-order beliefs).
Lemma A.8. The type structure T* = (T, 5F :i € I) is a complete level-k type structure.

Proof. Observe that C} = {T:m :m=1,2,...} is a Borel cover that, by construction, satisfies conditions

(1)-(ii)-(iii) of a complete level-k type structure. m

Remark A.1. Because T7* is a level-k type structure, it is not hierarchy-complete. It is also not type-
complete, i.e., the maps §; are not onto. In particular, there is no type t; with marg g  3;(t;) # p; and
Supp 87 (t}) = S_; x T*,.

Induces Hierarchies of Countable Level-k Type Structures For the remainder of the argument,
fix a level-k type structure (7;,5; : @ € I). Then there exists a Borel covers C; = {T/" : m = 1,2,...},
for each ¢ € I, that jointly satisfy conditions (i)-(ii) of Definition 5.1. Let pI* : S_; x T_; — X and
0" : T; = H!™ be the maps associated with this type structure.

Lemma A.9. Suppose, for each i, T; is countable. Then, for each m and each n, there is a map f|"" :
T/ — T."™ so that the following holds: For each t; € T™, 6™(t;) = 6; " (f"" (t:)).
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Before coming to the proof of Lemma A.9, let us note that the Lemma delivers an f;™" : T/ — T,;"™ that
is Borel measurable and preserves n'"-order beliefs. Measurability follows since 7™ is countable. The fact

that f”" is measurable is important in showing the existence of the map f/" "™+,

Proof. The structure of the proof is as follows: We fix a type ¢; € T;" and show that there exists a type
tr € T;°™ with 6;""(tF) = 67(¢;). The map f;™" : T/™ — T;"™ can then be constructed by setting f;"" (¢;)
to be the associated tf € T."™, i.e., with 6;""(¢}) = 6(¢;). The proof is by induction on n.

n = 1 : First consider m = 1 and let fil’1 (T — Ti’"’1 be an arbitrary map. Since t; € T;' and fil’l(ti) € T;"1

are both 1-types in their respective type structures, it follows that

marg g_. f3i(t;) = p; = marg S,iﬂ;(filﬂ(ti))'

7 (2

By Lemma A.1, 6§} (t;) = marg g [(3;(t;) and SO ) = margsiiﬁf(f-l’l(ti)). From this, the claim
follows.

Next consider m > 2. Fix some t; € T/". Note, there exists some v; € A(S_; xT*,) so that marg s_.Vi=
marg . 3;(t;) and v;(S_; X T*~') = 1. By construction, there exists some ¢} € /"™ so that 53 (t}) = v;.
Now notice that

6} (i) = marg 5 Bi(t:) = marg 5_,v; = 6,1 ().

2

(The first and last equality follows from Lemma A.1. The middle equality comes from the definition of v;.)

From this, the claim follows.

n > 2 : Suppose the claim holds for n > 1. We show that it also holds for n + 1.

First consider m = 1. Note, by the induction hypothesis, for each player j, there exists a mapping
fir Ty — TF so that fI'(t;) = fi""(t;) for some m with t; € T/*. (Note, the choice of m does not
matter-we only require that t; € 77".) So the product map f"; : T_; — T, satisfies the following
property:

P (s into) = P (s, ().

(This uses Lemmata A.2-A.3.) Thus, for each event Efjl CX!x H"

(O B = (id s x f7) () (B, M

where id _; : S_; — S_; is the identity map.
Fix some t; € T}. Let v; € A(S_; x T*,) be the image measure of §3;(t;) under (id _; x f*,). By
construction, there exists a type ¢ € T,"" with 87 (t¥) = v;. It remains to show that 6" "' (t) = a7+1(¢,).
Fix some event E"' C X x H",. Note,
67 (B = i (o™ (B
= Bilt) ((d = 77 (™7 B )
= Bi(t:) (P71 (EZT)
= o7 () (B,
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where the third line uses Equation 1. This establishes ;""" (£) = 671(¢;).
Next consider m > 2. By the induction hypothesis and Lemmata A.2-A.3, for each t_; € TTi_l,

pi (s mistoa) = o7 sy ST (1))
Thus, for each event "' C X x H",,

(P T EE) 1 (S x T = (i f78) () T E ) A (S < 7). (@)

2

Fix some ¢; € T;". Let v; € A(S_; x T*,) satisfy the following: For each E*;, C S5_; x Tj’im_l,
vi(B*;) = Bi(t:)((id i x f77 ") 7N (E”)

and v;(S_; x (T*\T*™ 1)) = 0. Since B;(t;)(S_i x T™ ') = 1, this is a well-defined measure in A(S_; x
T_;) and, moreover, v;(S_; x T*™ ") = 1. By construction, there exists a type ¢ € T, with 8 (t}) = v;.
. *, 41/, % 1
It remains to show that 87" (t) = 67 (¢;).
Fix some event E™7* C X x H",. Note,

o EN(ERT) = vl (o™ THERT)
= (( p;"nJrl)_l(Eﬁifl)) N (sz « Ti,szl)>

= Bults) (G 777 (G B D) N (S x )
PEOTHERT) N (S x TTY)
P THER)

where the second line uses the fact that v;(S_; x Tj’imfl) = 1, the third line follows from the construction
of v;, the fourth line follows from Equation 2, and the fifth line uses the fact that 8;(¢;)(S—; x Tf”i_l) =1.
This establishes 6" 7! (t¥) = 67 1(t;). m

Remark A.2. Proposition 5.3 establishes that there exists a complete level-k type structure (for p) that
induces all hierarchies of beliefs that are induced by any countable level-k type structure (for ). The
result can be extended to non-countable level-k type structures, provided they induce a countable number
of finite-order beliefs. (A proof is available upon request.) But, the result stops short of establishing the

following conjecture:

Conjecture: There exist a complete level-k type structure (for p) that induces all hierarchies

of beliefs induced by some level-k type structure (for p).

This remains an open question.

To understand the difficulty, note that Lemma A.9 delivers maps f/™" : T/ — T, that are Borel
measurable and preserve nt"-order beliefs. The fact that each fi"™ is Borel measurable is important. For
instance, the fact that each fﬁ“i’l is Borel measurable is used to show that, for each t; € T;™, there is some
tr e TF™ that with 62(t;) = 672 ().

Here, the fact that each f;"" is measurable follows from the fact that 7T} is countable. We do not know
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if the result can be extended to any level-k type structure or even any level-k type structure with Polish
type sets T;. We now explain the tradeoff.

Define a multifunction F;™" : T/™ — T;"™, where

F" () = (67") 7 ({67 (t)})

for each t; € T)". Suppose this multifunction is non-empty. It suffices to show that there is a Borel
measurable selection of F,™" or, equivalently, that there is a Borel uniformization or a Borel section of
graph(F;™").

Standard measurable selection theorems and uniformization theorems cannot be applied here, since the
maps 3f (and so §;"") are not continuous. There are other constructions of the canonical structure, which
would lead to B to be continuous. However, they raise other issues for selection/uniformization. The
central issues is that, under those constructions, the sets 7" are not compact. (More details are available

upon request.) We do not know if there is a construction or alternate proof that circumvents these issues.

Appendix B Proofs for Sections 6-7

B.1 Proofs for Section 6

Lemma B.1. Let J; : S; - A(S_;) be a correspondence with
L71(81) = {Vi € A(S_l) 1S € BRJZ@]}

Then J;(s;) is closed-valued. Moreover, if s; € S}, then Ji(s;) is non-empty valued.

Proof. Let 7; : S; x A(S_;) — R be defined by
ﬁi(si, Vi) = Zm(&', S—i)Vi(S—i)-
S_;

It follows from Theorem 15.3 in Aliprantis and Border (2007) and the fact that S; is finite that 7; is
continuous. Moreover, since S; x A(S_;) is compact, 7; is bounded. As a consequence, the function
;S xS X A(S_z) — R defined by

7i(Si,riy vi) = (84, v3) — (14, v4)

is continuous and bounded.

Now, fix a sequence (v}, V2, ...) with each Vf € Ji(si). Then, for each uf and each r; € S;, 7; (s, r4, Vf) >

0. If (v},12,...) converges to v; then, for each ; € S;, 7;(s;,7:,v;) > 0. (See Theorem 15.3 in Aliprantis
and Border, 2007, which uses the fact that 7; is continuous and bounded.) Thus, v; € J;(s;) and J;(s;) is
closed. m

Lemma B.2.
(i) If E_; is Borel then B;(E_;) is Borel.

(i1) If E_; =0, then B;(E_;) =0 and so Borel.
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Proof. Part (i) follows from Lemma 15.16 in Aliprantis and Border (2007) and the fact that f3; is measur-

able. Part (ii) is immediate. m

Lemma B.3. For each m, the sets R are Borel.

Proof. The proof is by induction on m.
m = 1: Fix a strategy s; and let
O(s;) = {vi € A(S_; x T_;) : 5; € BR;[marg g v;]}.

It suffices to show that each O(s;) is closed. If so, each {s;} x 8; *(O(s;)) is Borel. (This uses the fact that

B; is measurable.) As a consequence,

Ri= |J ({si} x 87(0(s1)))

5;€85;

is the finite union of Borel sets and so Borel.
Observe that

O(s;) ={vi € A(S_i xT_;) :marg g_.v; = p;} = (ms_i)_l(ji(si))-

Since proj g_, is continuous, so is proj  : A(S—; x T;) = A(S—;). So, by Lemma B.1, O(s;) is closed.

m > 2: Assume that, for each i, R is Borel. As such, each R™; is also Borel. So by Lemma B.2(i), R}"

2

is Borel. m

B.2 Proof of Theorem 7.1

In what follows, we fix an anchor p and the sets L]" are defined relative to this anchor.
Proposition B.1. Fiz an epistemic game (G,T) where T is a level-k type structure for p. Then:
(i) projg, (RF N (S; x TY)) = L}, and
(ii) for each m > 1, proj g (R" N (S; x T{™)) C L

Proof. Begin with part (i). Fix some s; € projg, (R} N (S; x T}')). Then there exists some ¢; € T} so
that (s;,t;) € R}. As such, s; € BR;[marg s_,Bi(t:)] and marg g B;(t;) = ps. So s; € L}. Conversely, fix
s; € L. Then s; € BR;[u;] and, for each t; € T}}, marg s_,Bi(t:) = pi. Thus, {s;} x T C RIN(S; xT}).
As such, L} C proj g (R} N (S; x T})).

The proof of part (ii) is by induction on m. The case of m = 1 follows from part (i). Assume the
claim holds for m. Fix some s; € proj g (R{"™" N (S; x T;/"*")). Then there exists some t; € T;" " so that
(si,t;) € R As such, s; € BR;[marg g f;(t;)]. Moreover, B3;(t;)(R™ N (S—; x T™)) = 1. So, by the
induction hypothesis, marg g 3;(t;)(L™;) = 1. Assuch, s; € LI"™". m

37



Proof of Theorem 7.1. Part (i) is Proposition B.1. So we focus on part (ii). Throughout, fix a
complete level-k type structure for g with covers C; = {T” : m = 1,2,. ..} satisfying conditions (i)-(ii)-(iii)
of Definition 5.2. The proof is by induction on m.

The case of m = 1 is part (i) of Proposition B.1. So, assume the result holds for m. By part (ii) of
Proposition B.1, it suffices to show that

L7 Cprojg, (RPN (8 x T"H))

Fix s; € L;”H. Then there exists some v; € A(S_;) such that s; € BR,[v;], and v;(L™,) = 1. We will use
v; to construct a ; € A(S_; x T_;) so that: (i) marg g .05 = v, (ii) 23(S_; x T™;) = 1, and (iii) for each
n <m, ;(R",;) = 1. We then show that this suffices to deliver the result.

Step 1: By the induction hypothesis, for each player j, there exists a mapping 7;" : L7 — 17" that satisfies
the following property: For each s; € LT, (s;,7/"(s;)) € R} N (S; x Tj*). Let 77 : L™, — T™ be the
associated product map. For each s_; € L™, set D(s_;,7"%(s—;)) = v(s—;) and, for each (s_;,t_;) €
S_i x T_;\(gr(t™)), set ¥(s_;,t_;) = 0. This gives a &, € A(S_; x T_;). By the construction and the fact
that 7™ is Borel, we have 7;(S_; x T™) = 1. By the construction and the fact that each R",

; is Borel
(Lemma B.3), we have that, for each n <m, ;(R";) = 1.

Step 2: Since the type structure is a complete level-k type structure for u, there exists a type t; € Ti”ﬁl
with B3;(t;) = 7. Since marg g  B;(t;) = v; and s; € BR;[v;], it follows that (s;,1;) € R}. Since, for each

n <m, Bi(t:i)(RZ;) =1, (si,t;) € R;nJrl. n

B.3 Result for Section 7.3

Lemma B.4. Fiz an anchor pu. For each m > 1 and each n > m, L} C S".

Proof. The proof is by induction on m. For m = 1 and each n > 1, it is immediate that L? C S}. Suppose
the result holds for m > 1. Fix n > m and note that s; € L;H'l if and only if s; is a best response under
some v; € A(S_;) with v;(L™,) = 1. By the induction hypothesis, L™, C 5™ and so v;(S™) = 1. Thus,
s; € S”_”;rl, n

Appendix C Proofs for Section 8

In the main text, we stated the following: There exists a weakly decreasing function J : {0,1,2,...} —
{0,...,k} so that, for each i and each m > 0,

St ={z,...,z+ J(m)A}.
Moreover, the function J satisfies the following criterion: (i) J(0) = &; (ii) J(m + 1) < J(m) if J(m) > 1

and z + J(m)A > 5

characterization.

S0 p); and (iii) J(m 4 1) = J(m) otherwise. This appendix is devoted to prove this
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C.1 Key Results

To prove the claim, it will be useful to introduce standard terminology: Fix some non-empty set X_; C S_;.
Say s; is dominated given X _; if there exists a o; € A(S_;) so that m;(0;,s—;) > m(si, s—;), for each
s—; € X_;. Say s; is justifiable given X _; if there exists a v; with s; € BR;[;] and v;(X_;) = 1. A
standard result is that s; is justifiable given X_; if and only if it is not dominated given X_;.

The claim follows from the following three lemmata:

Lemma C.1. Let s* = (s7,..., 3\*1\) be such that s7 = --- = s}y Then, (s3,..., STI‘) is a Nash equilibrium

if and only if either sf =z or sf =z + kA < ﬁ-

Lemma C.2. Fiz some z + kA > min{z, ﬁ}. Then, x + kA is dominated given {z,z + A,...,z +
EAYII-T,

Lemma C.3. Fiz some x + kA > x. If x + kA is justifiable given {x,x + A,...,x + EA}‘”_l, then
z 4 (k— 1)A is justifiable given {z,z + A, ...,z + (A=

C.2 Proof of Key Results

Proof of Lemma C.1. Fixsf=---= STII =z + kA. Then s* is a Nash equilibrium if and only if, for

each i € I and each each j € {0,...,k},
mi(s),s%) = B = ((z+kA)?*(1 = p)®) = B — ((z +jA) = plz + kA))* = mi(z + jA, s7,).
Thus, s* is a Nash equilibrium if and only if, for each j € {0,...,k},
((z+ kA1 =p)*) < ((z+5A) = plz + kA))?
or equivalently, for each j € {0, ..., s},
(z+kAP(1=2p+p?) < (z+ A +p*(z + kA)? —2p(z + jA)(z + kA)
or equivalently, for each j € {0,...,x},
(z+kA)? = (z+5A)? < 2p(a + kA)? = 2p(z + jA)(z + kA)
or equivalently, for each j € {0,...,x},
Ak =) (k+7) + 2z(k — j) < 2p(z + kA)(k — j). (3)
First suppose that there is some j > k. Equation (3) holds for j > k if and only if
Ak +7) + 2z > 2p(x + kA).

Thus, Equation (3) holds for all j > k if and only if it holds for j = k + 1, i.e., if and only if,

A2k + 1) + 22 > 2p(z + kA)
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or equivalently if and only if
2(z +kA)(1—-p) = —A.

This trivially holds since > 0 and A > 0.
Second, suppose that there is some j < k. Equation (3) holds for j < k if and only if

Ak +7) + 2z < 2p(x + kA).

Thus, Equation (3) holds for all j < k if and only if either ¥ = 0 or £ > 1 and the condition holds for
j=k—1.If £ > 1, this requires that

A2k — 1) + 2z < 2p(z + kA)

or equivalently if and only if
2z +kA)(1—p) < A

or equivalently if and only if

as stated. m

Proof of Lemma C.2. We will show that, for each s_; = (s; : j # i) € {z,z + A, ...,z + kA}I=1
mi(z + (k — 1)A,s_;) > m(xz + kA,s_;). To do so, observe that, for each s_; = (s; : j # i) € {z,z +
A, ...z 4 kAT

> si € lzz+ kAL

1
I -1
=15z

Thus, it suffices to show that, for each a € [z, 2 + kA],
B—(z+(k—1)A—pa)> > B— (z+kA —pa)*. (4)
Fix some « € [z, z + kA] and note that Equation (4) holds if and only if
(z+ (k- 1A = pa)® < (z + kA — pa)?.

or equivalently if and only if

(z+ (k=1)A)? = 2pa(z + (k = 1)A) < (z + kA)? = 2pa(z + kA)
or equivalently if and only if

(z+ (k= 1)A)? — (z + kA)? < 2pa(z + (k — 1)A) — 2pa(z + kA)
or equivalently if and only if

(k—1)?A +22(k — 1) — k*A — 22k < —2pa
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or equivalently if and only if
A(=2k+1) — 2z < —2pa

or equivalently if and only if

A
pa+§<(g+kA).

But notice that A A
pat+ o <plz+kA)+ .

So it suffices to show that

A
(z+kA)(1 —p) > 5
which holds by the assumption that x + kA > ﬁ. n

To prove Lemma C.3, it will be useful to have an auxiliary result. Given v; € A(S_;), write

BuG-)= 7 O S s | willss i € i),

(sjiel\{ih)eS—i \JeI\{i}
for the expected strategy played under the belief v;.

Lemma C.4. Fiz s; =z + kA so that s; € BR;[v;] for some v; € A(S_;). Then there exist a y € [0, k] so
that

(i) z+yA =max{pE,,(s—i), z}, and
(i) k is either |y| or [y].

Moreover, if both |y|,[y] € {0,...,K}, then k = |y] only if y — |y] < [yl —y and k = [y] only if
[yl —y <y - Lyl

Proof. Construct an auxiliary function f; : [0,z + kA] x A(S_;) — R so that

filwv) = Y B—(xi— = > )% | willsy - € I\{i}).

Il-1
(sj:7€I\{i})eS—; 1] Jel\{1}

Note, for any v; € A(S_;), fi(z;,v;) is strictly increasing at x; (resp. strictly decreasing) provided z; <
pE,, (s—;) (resp. x; > pE,,(s—;)); it is maximized at =] = pE,, (s_;).

Fix some v;. If pE,, (s_;) < z, take y = 0 and note that [0] = [0] = 0 from which the result follows.
So, for the remainder, assume pE,, (s_;) > z.

Note, there exists some y € (0, ] so that z + yA = pE,,(s—;). Since, for each s; € S;, m;i(s;,v;) =

fi(si,vi), we can conclude:
(i) If k < |y], then m(z + kA, v;) < mi(z + |y]A,v;); and
(ii) if k& > [y], then m(z + kA, v;) < mi(z + [y]A, v).

As a consequence, if  + kA € BR,[;] then either k = |y] or k = [y].
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Finally, observe that, for each z € R, f;(pE,,(s—;) + z,v3) = fi(PEy,(s—i) — z,v4). So, fi(x + |y|A) >
filz + [y]A) if and only if y — |y] < [y] — y. And, similarly, f;(z + |y]A) < fi(z + [y]A) if and only if
y—lyl =Tyl -y =

Proof of Lemma C.3. Suppose s; =z + kA > z is justifiable given {z,z + A, ...,z + fA}'”‘l. Using
the definition of justifiability and Lemma C.2, it follows that £ > k and there exists a 1) € A(S_;) that

satisfies the following properties:
(i) s; € BR;[VY);
(ii) Suppr? C {z,z + A,...,z+ (A}I=1; and
(iii) there must be a player j # i and an s; € {& + (k+ 1)A,...,z + (A} with marg s, v2(s5) > 0.

Note, if s; — A € BR;[/?], then we are done. So, throughout, suppose s; — A & BR;[1)].
Construct maps f; : S; — S; so that

z+(m—1A ifn>1

fi(z+nA) =
ifn=0.

and let f_; : S_; — S_; be the associated product map. Let v} be the image measure of f_; under v and
observe that Suppv} C {z,z + A,...,z + (A}I=1

It suffices to show that BR;[v}] C {s;,s;i —A}: If s; — A = 2+ (k—1)A is a best response under v}, it is
justifiable given {z,z 4+ A, ...,z + EA}‘I‘_l. If not, v} satisfies the same three properties that v satisfied
(properties (i)-(ii)-(iii)). Thus, we can repeat the argument and construct a v? that is the image measure
of f_; under v}. By construction, Suppv? C {z,z+A4, ... ,§+EA}U\*1 and BR;[v?] C {s;,s;, —A}. And so
on. The claim is that there must be an M so that {s; — A} C BR;[v}]. If not, for each m, BR;[v™™] = {s;}.
But, there exists m with v/™(z,...,z) = 1 and only z < s; is a best response to s_; = (z,...,z), a
contradiction.

With the above in mind, we focus on showing that BR;[v}] C {s;, s; — A}. Observe that s; = z+ kA for
k > 1; so, there exists some y° > 0 with pE,o(s—;) = z +y°A. Similarly, there exists some y* € R so that
PE,1(s—i) = z +y'A. (Note, y* < 0 only if pE,o(s-;) < z.) Since E,1(s—) € [Eyo(s—i) — A, Epo(s-4)),
vt ey’ —1,9%).

Observe that BR;[v}] C {z+ [y*|A,z+ [y']A}. (See Lemma C.4.) Thus, it suffices to show that (i) if
z+ |yt A € BR;[1}], then [y'] € {k,k — 1}, and (ii) if z + [y']A € BR;[v}], then [y'] € {k,k — 1}.

First, suppose that k = 3°. Since y' € [y° — 1,4°), it follows that [y'] = k — 1 and [y'] = k, as
required.

Second, suppose that k = [y°] < ¢ If (z + |y']A) € BR;[v}], then |y'] is either [¢°] = k or
|y° — 1] = k — 1. (This follows from the fact that y' € [y° — 1,4°).) So suppose (z + [y']A) € BR;[v}].
Observe that

(k+1)=T"1>Ty'1> [y - 1] = (k- 1),

where the first equality uses the fact that k = |y°] < y°. Thus, it suffices to show that [y'] # (k + 1): If
[y°] = [y'] = (k + 1) then k = |y°] > |y*| implies [y | = k. Since (z + [y']A) € BR,[v}], y* — [y*]| >
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[y'] — y! (Lemma C.4) and so

and so
0

v = > -y
contradicting the fact that k = [¢°| (Lemma C.4).
Third, suppose that k& = [¢°] > % If (z + [y']A) € BR;[v}], then [y'] is either [¢°] = k or
[y° — 1] = k — 1. (This follows from the fact that y' € [y° — 1,4°).) So suppose (z + |y']A) € BR;[v}].
Since k = [y"] = [y'] = [y’ — 1] =k - 1,

k> ly') > (k—-2).

As such, it suffices to show that |y'| # (k — 2). Suppose, contra hypothesis, that [y'| = (k — 2). Using
the fact that [y!] > [¢° — 1] =k -1, [y'] = k — 1. Since (z + |y']A) € BR;[v}], [y'] — v* > v* — |y!]
(Lemma C.4),

(k=1)—y' >2y" — (k-2

or ,
E—=>qyh
9 = Yy
Now, using the fact that s; € BR;[¢f] and s; — A ¢ BR;[?], 4° — [¢°] > [4°] — %° (Lemma C.4). Since
k=Ty"1>4% [3°] = (k—1) and so

or
But now observe that

a contradiction. m

C.3 Eliminating One Strategy at a Time

Recall, Z(A,p) = ﬁ. The main text eluded to the following:

Proposition C.1. Suppose  + kA < 3%(A,p). Then there exists some M so that J(m) =J(m —1) -1
for allm < M and J(m) = J(M) for allm > M.

This proposition will follow from the following Lemma.

Lemma C.5. For each i € I, set s; = x + kA and s; = z + (k+1)A. If (s1,...,5)7) s not a Nash
equilibrium, then s; = x + kA is a best response given s*,; if and only if s; =z + kA < %.

To see why the lemma suffices: Recall J(0) = k. If z+rA < Z(A, p), then J(m) = & for all m. So suppose
z+KkA > Z(A,p). In this case J(1) < J(0). We will have J(1) = k—1 if either (z+(rk—1)A, ..., z+(k—1)A)

is a Nash equilibrium or z + (k — 1)A is a best response under (z + kA, ...,z + kA). The former requires
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z+ kA < Z(A,p)+ A and the latter requires  + kA < 3Z(A, p); since 3Z(A,p) > (A, p)+A, J(1) =k—1
if g+ kA <3%(A,p). If J(2) = J(1), we are done. If not, J(2) = J(1)—1since z+ (k—2)A < z+(k—1)A.
And so on.

Proof of Lemma C.5. For each j € {0,...,k},
mi(z + kA, sT;) > mi(z + A, s7)
if and only if, for each j € {0,...,x},
((@+kA) = plz+ (k+1)A))* < ((z+7A) —plz+ (k+ 1)A))*
or equivalently, for each j € {0,...,x},
(z+kA)? = 2p(z + (k+ 1)A) (2 +kA) < (z+7A)" = 2p(z + (k+ 1)A) (2 +jA)
or equivalently, for each j € {0,...,x},
Ak +5)(k =)+ 2z(k — j) < 2p(z + (k+ 1D)A)(k - j). ()
First, observe that Equation (5) holds for each j > k if and only if
Ak +j)+2z > 2p(z+ (k+ 1)A).
Thus, it will hold for all j > £ if and only if it holds for j = k + 1, i.e., if and only if
ARk +1)+2z > 2p(z+ (k+ 1)A).

or if and only if
2(1 - p)(z +kA) > A(2p - 1).

Since (s1,...,5)7) is not a Nash equilibrium 2(1 — p)(z + kA) > A. Given that A > (2p — 1)A, the
conclusion holds.

Second, observe that Equation (5) holds for each j < k if and only if
Ak +j)+2z <2p(z+ (k+1)A).
Thus, it will hold for all j < k if and only if it holds for j = k — 1, i.e., if and only if
A2k — 1)+ 22 <2p(z+ (K + 1)A).

or if and only if
2(1 = p)(z + kA) < (1+2p)A,

as stated. m
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Appendix D Proofs for Section 9

D.1 Proof of Proposition 9.1

The proof is analogous to Example 9.1: Since each |S;| > 2, take {0;,<¢;} C S;. Fix a non-degenerate
anchor p, i.e., an anchor where each p; does not assign probability 1 to some strategy. Then, for each i,
there exists some strategy s_; € S_; so that u;(s—;) € (0,1). Without loss of generality, suppose that, for
each i, this strategy profile is O_;.

Inductively define h%; so that h!o(0_;) = Land h"T'(O_;,..., A" o) = 1. Set hig = (hl g, h2g,...).
Likewise, for each player i, inductively define b7 as follows: First, set h} = ;. Second, h™(O_;, hl_iﬂ, cen b ) =
p € (0,1:(0_;)). (Note, p does not depend on m.) Set h; = (h},h?,...). Proposition 9.1 will follow from

the following two lemmata.

Lemma D.1. Fiz a type structure T = (S_;, T3, B; : i € I). If there exists a type t; € T; with 0;(t;) = hy,
then there must be a type t_, o € T_; with §_;(t_; 0) = h_; 0.

Proof. Suppose there is a type t; € T; with §;(¢;) = h;. Note, for each m > 1,
h?wl('jfia hlﬂ.’m, R hTi,D) =D
or, equivalently, Bl(tz)(EzmH) = p for
EP = (o) T {0 ko R o))

Observe that the sets EI" are decreasing, i.e., for each m > 2, B! C E™. Since (8;(t;)(EM) : m > 2) =

(p.p:ps-- ),
p= lim f;(t:)(E") = fi(t:)( N EM-

m>2

(See, e.g., Theorem 10.8 in Aliprantis and Border, 2007.) Thus,

ﬂE{“#(Z),

m>2

i.e., there exists some type t_; € T_; with 0_;(t_;) = (hl_,-,vm,hQ_i’D7 ...), as required. m

Lemma D.2. If T = (S_;,T;,5; : t € I) is a level-k type structure for p, then there is no type t; o € T;
with (Si(ti)g) = hl"g.

Proof. For each ¢ € I, let C; = {T/" : m = 1,2,...} be a Borel cover so that (C; : i € I) jointly satisfy
conditions (i)-(ii) of Definition 5.1. We will show that, for each m > 1, and each ¢; € T/", 6]"(t;) # h{'s.
The proof is by induction on m.

The case of m = 1 is immediate: If ¢; € T}, 6; (t;)(0_;) # 1 and so 6} (t;) # h{ 5. Suppose then that
the claim holds for m. Fix t; € TimH. By the induction hypothesis,

(P T S X (B BT 0))) DV (S X T = 0.
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Since B;(t;)(S—; x T™) =1,

Bt (p )7 (S x {(hlip, .. hT 0)}) = 0

and so 6;" 1 (t;) # h;'E”l. ]

D.2 Properties of Level-k Type Structures

Example D.1. This example shows that, for a given level-k type structure, we may not be able to choose
the cover to be a partition. As such, we may have that a type is both a m-type and an n-type for every
associated cover.

Construct an S-based level-k type structures for p, viz. T = (S_;,T;, 5; : ¢ € I), as follows: For each i,
take T; = N,.. Choose 3; so that it satisfies the following properties. First, marg g 3;(t;) = p; if and only
if t; € {1,3}. Second, Suppmarg;  B3;(1) = T—;. Third, 3;(2)(S—; x {1}) = B:(2)(S-; x {3}) = 1. Fourth,
for each k > 2, B;(k+1)(S_; x {k}) = 1.

This is a level-k type structure for . We can choose the cover {T/™ : m = 1,2,...} so that T} = {1, 3}
and, for each m > 2, T/ = {m}. This cover is non-partitional. However, any cover must be non-partitional.
To see this, fix a cover {U™ : m =1,2,...}. Since Suppmarg . 3;(1) = T_;, it must be that 1 € U}'. So,
U} is either {1} or {1,3}. If U} = {1} then U2, = 0. So we must have U} = {1,3} and, from this, it

?

follows that U? = {2}. But this implies that U} = {3}. Thus, any cover must have U! N U} # 0. O

Example D.2. This example shows that, for any anchor p, there may be a level-k type structure for p
where the associated Borel cover is not unique. As a result, a type t; may be a m-type for one associated
cover and an n-type for another associated cover, despite the fact that m # n.

Fix an anchor p. Construct a type structure as follows: For each i, take T; = Ny. Choose f§; so
that it satisfies the following properties. First, marg g . f3;(t;) = p; if and only if ¢; € {1,3}. Second,
Suppmarg . 3i(1) = T—;. Third, for each m > 1, B;(m + 1)(S_; x {m}) = 1.

This is a level-k type structure for p. Notice, we can take the cover {I/™ : m = 1,2,...} so that

T = {m} for each m. This cover is a partition. However, there is a second non-partitional cover
{U™:m=1,2,...} with U} = {1,3} and, for each m > 2, U™ = {m}. Under the first cover, 3 is a 3-type,
while under the second cover, 3 is both a 1-type and a 3-type. a

D.3 Finite-Order Belief Type Structures

We begin by introducing a type structure that can capture the idea that a player thinks other players do
not have an m**-order belief.

Definition D.1. A finitary S-based type structure is some 7 = (S_q;,Ti,B,- : 4 € I) where, for each
i €1,

(1) T; is a metrizable set of types for i,
(ii) Bi: Ty — A(S_; x T_i) U {d} is a measurable belief map for i, and

(iii) T:\(3;) ' ({d}) # 0.

46



To better understand, observe that, now, there can be a type #; € T; with j3; (t;) = d. This type is a “dummy
type,” that is not associated with a belief. Loosely, think of this type as one that does not “reason.” So,
if B;(t;) assigns positive probability to a “dummy type” of player j, then t; assigns positive probability to
the event that player j “does not reason.” The fact that each T;\(5;)~*({d}) # 0 implies that no player
only has “dummy types.” We refer to a finitary S-based type structure as, a finitary type structure

Say (s;,1;) is rational if §;(f;) # {d} and satisfies the condition in Definition 6.1. Say #; believes an
event E_; if §;(f;) # {d} and i; satisfies the condition in Definition 6.2. We define RmBR analogously to
Definition 6.3. Write ]:Z,l for the set of rational strategy-type pairs and R;"H for the set of strategy-type
pairs which satisfy rationality and m*-order belief of rationality.

Each ordinary type structure is also a finitary S-based type structure. With this in mind, we focus
on showing that the RmBR predictions of a finitary type structure can be replicated in an ordinary type
structure. In doing so, we will focus on type structures that are first-order complete: Call T first-order

complete if, for each v; € A(S_;), there exists some #; € T; with marg s,ﬁi (t;) = v;.

Proposition D.1. Fiz a game with no weakly dominant strategy. Let T = (S_i,j’i,ﬁi i€ 1) bea
finitary type structure that is first-order complete. Then, there exists an ordinary S-based type structure
T=(5_;,T;,B;:i€I) with each T; C T, so that

(i) for each t; € T;, (s;,t;) € R if and only if (s;,t;) € le, and
(ii) proj g, Ri"* = proj SR;”

To prove Proposition D.1, we will make use of the following fact: If a game has no weakly dominant
strategy for i, then we can find a mapping f; : S; — A(S_;) so that, for each s; € S;, s; & BR;[fi(s:)]-
As a consequence, each strategy can be inconsistent with rationality. This is important: If ¢; is a “dummy
type,” each element of S; x {t;} is irrational. We would like a type t; that assigns positive probability
to (s4,%;) to retain its marginal belief about behavior, while continuing to assign positive probability to

irrationality.

Proof of Proposition D.1. Fix a game with no weakly dominant strategy and an associated finitary
type structure that is first-order complete, viz. T. Let T; = Ti\(Bi)_l({d}). Since 3; is measurable, T} is
a Borel subset of T}. Endow 7T} with the relative topology and note that it is metrizable.

To construct the belief maps, it will be useful to first define auxiliary maps. Recall, since the game
has no weakly dominant strategies, we can find mappings f; : S; — A(S_;) so that, for each s, € S,
s; & BR[fi(s;)]. Since T is first-order complete, there are mappings 7; : S; — T; such that, for each s;,
Bz(ﬁ(sz)) # d and marg Sfﬁl(ﬂ(sz)) = fi(s;). Now, define maps 7; : S; X T. — S; x T} so that

(i) = (siy ;) ift; €T;
(si,Ti(s:)) ift; €15

Observe that

7 0 if T\T; =
i({s;} x (T;\T3)) = { T\T,

(si,i(s:))} i TNT: # 0.
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As a consequence, 7; is measurable: For each Borel E; C S; x T;,

() (By) = U ({si} x (T\T2)) | U E;

si:(s:,7Ti(si))EE; and 7;(s;)€T:

is the finite union of Borel sets and so Borel.
Let 8; : T; — A(S_; x T—;) so that, for each t; € T;, 5;(t;) is the image measure of Bi(ti) under 7_;.
Note, 3, is measurable, since 8; =7_, o B;.

To better understand the construction, consider the set of types
TP ={t; € T;: Bi(t:)(S—; x T_;) = 1}.

Note, for each t; € T? and each Borel E_; C S_; x Ty, B;(t;)(E_;) = Bi(t;)(E_;). Consider instead some

t; € T\T;7. Then, there exists some j # i so that marg g 7 Bi(t:)(S; x (T;\T;)) > 0. As such, there will

be (s7,7;(s;)) so that marg g 1 Bi(t:)({(s5,7;(s;))}) > 0. The key is that each (s;,7;(s;)) is irrational.
With this in mind, we complete the proof by showing the following: For each m > 1 and each t; € T;,

(i) (si,t;) € R if and only if (s;,t;) € RI".
(i) if t; € T\T?, (Si x {t;}) N R = (S; x {t;}) N R™+! = 0.

The proof is by induction on m.

m = 1: Fix t; € T;. By construction, marg S_iﬁi(ti) =marg g_ B3i(t;). As such, (s;,t;) € R} if and only if
(si,t;) € R

Now suppose that t; € T;\T?. Since Rl_l CS_;xT_; and Bi(ti)(S_i xT_;) <1, (S;x{t:;})N I:Zf =0.
Similarly, there must be some j # i and some s; € S; so that marg g, .7, 8i(t:)({(s, 7;(s;))}) > 0. Since
(s5,75(s5)) € R}, it follows that (S; x {t;}) N R = 0.

m > 2: Suppose the claim holds for m > 1. Fix a type t; € T;. If t; ¢ T then the claim follows from the
fact that (S; x {t;}) N R? = (S; x {t;}) N R? = (). So suppose t; € T?. Note f;(t;) believes R™; if and only
if Bl(tl) believes R™,. (This is by construction.) By the induction hypothesis, R™, = RTm as required. m

D.4 Fine Grid

Finite Game Consider the beauty contest. For any given m > 1, there exists a e-fine grid so that the
m-rationalizable strategies are strictly contained in the (m — 1)-rationalizable strategies. To see this fix a
sequence ((A,, ky,) : n > 1) where, for each n, Ak, =T and lim,,_,» A,, = 0. For a given grid (A, kn),
we eliminate a strategy on round m if k, > m and z + (k, — m + 1)A,, > An%. For each m, there
exists some N(m) so that x, > m for all n > N(m). (This follows from the fact that xK,A, =Z—2 > 0

and lim,, o, A,, = 0.) Now observe that there is an N(m) > N(m) so that, for each n > N(m),

1] —2p

T>N, 57—
2l11(1 = p)

+ A, (m—1).

So, for any n > N(m), the m-rationalizable strategies are a strict subset of the (m — 1)-rationalizable

strategies in the game associated with the grid (A, k,,).
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Infinite Game Suppose instead that, in the beauty contest, S; = [z, T] where T > x > 0. We will argue
that, for each m > 1, [z,7) C S/

Fix some s; € [z,T) with s; # 0. Observe that there exists some

7l — _
ae(l,min{| | p’x}).
plI|—p’si

Note, since a < %, as; € [z,T). Suppose v; assigns probability 1 to (as;,...,as;). To show that
s; € BR;[v;] it suffices to show that m;(s;,v;) = 1. Notice that as; > s; since a > 1 and s; > 0. So, if the

target is smaller than s;, m;(s;,v;) = 1. In fact, the target is

si + (1] — Das;

]
Since o > ﬂ%, s; is strictly higher than the target, as desired.
Next, suppose that s; = 0. Then s; = z = 0. In that case, let v; assigns probability 1 to (z,...,z) so
that m;(s;, ;) > 0. If ¢ instead chooses y; > x = 0, m;(y;,v;) = 0: This follows since y — % > %. (Here we

use the fact that |I| > 3.)
If follows that [z,7) C S}. Moreover, we showed that each s; € [z,T) is a best response under a v; with

vi([z, Z)11=1) = 1. Since [z, 7)//I=1 C S, the claim follows by induction.
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