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Abstract

The level-k concept is widely used to assess players’ reasoning in games. This paper argues that

the concept can overstate evidence of bounded reasoning. It uses epistemic game theory to model the

reasoning process typically associated with level-k behavior. The main theorem shows that the level-k

model of reasoning has the predictive power of m-rationalizability. So, behavior viewed as reflecting

k levels of reasoning may be consistent with higher levels of reasoning. The paper goes on to provide

an epistemic characterization of level-k behavior, which highlights the difficulty in inferring levels of

reasoning from the level k categorization.

1 Introduction

The Level-k (Nagel, 1995; Stahl and Wilson, 1994, 1995; Costa-Gomes, Crawford and Broseta, 2001; Costa-

Gomes and Crawford, 2006) and the related cognitive hierarchy (Camerer, Ho and Chong, 2004) models

have played an instrumental role in behavioral game theory. They have gained prominence precisely because

of their ability to explain departures from equilibrium in both experimental data and in applications. At

the same time, these models have come to serve as a lens through which experimenters have assessed

players’ reasoning—and bounded reasoning—in games.

This paper revisits the claim that the categorization of levels, as offered by the level-k literature, can

provide direct information about how players reason—be it reasoning about rationality, reasoning about

irrationality, reasoning about unsophisticated behavior, depths of reasoning or steps in reasoning. It argues

that the current interpretation of the level-k model overestimates the extent to which there is evidence of

“bounded reasoning” in experimental data.

To make this point, we focus on the basic level-k model. That analysis begins with what is called an

anchor, i.e., an exogenous distribution about how the game is played. The anchor is associated with a

distribution of so-called level-0 behavior. A level-1 player has a belief that corresponds to the anchor and
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plays a best response given that belief. The strategies that are a best response to such a belief correspond

to level-1 behavior. A level-2 player has a belief that assigns probability 1 to level-1 behavior and plays a

best response given such a belief. And so on.

To understand our approach, begin with a known result:

Baseline Result: Fix an anchor. If there is a k ≥ 1 so that a strategy is classified as

level k for that anchor, then the same strategy is k-rationalizable, i.e., survives k rounds of

rationalizability.

(See, e.g., Costa-Gomes and Crawford, 2006, pp. 1739 and Schipper and Zhou, 2024, Proposition 1.) As a

consequence of this result, if a strategy is classified as level k, then there is an m ≥ k so that the strategy is

m-rationalizable. (Note, the strategy is k-rationalizable and som-rationalizable for somem ≥ k.) Standard

results in epistemic game theory establish that a strategy is m-rationalizable if and only if it is consistent

with rationality and (m− 1)th-order belief of rationality, i.e., R(m− 1)BR. (See, e.g., Brandenburger and

Dekel, 1987 and Tan and Werlang, 1988.) Thus, if a strategy is classified as level k then there is an m ≥ k

so that the strategy is consistent with R(m− 1)BR.

The baseline result points to a preliminary approach for relating the categorization from the level-k

model to steps of reasoning about rationality:

If a strategy is classified as level k and there is nom > k so that the strategy ism-rationalizable,

then the strategy is consistent with R(k − 1)BR but is inconsistent with RmBR for all m ≥ k.

Thus, a classification of k (according to the level-k model) captures the maximum level of

reasoning about rationality consistent with the data.

However, there are many examples where a strategy is classified as level k, despite the fact that the

strategy is consistent with m-rationalizability for m > k. This can occur because the strategy is, in fact,

also classified as level m > k for the same anchor. (See, e.g., Example 1 in Schipper and Zhou, 2024 and

the example in Section 2.1) Or, it can occur because the strategy is classified as level m > k for a different

anchor. But, importantly, it can also occur even if, for every possible anchor, the strategy is classified as at

most level k. Section 2 provides such an example. The example features a strategy that can be classified

as level 1 for an appropriate anchor. However, for any anchor, the strategy cannot be classified as level

k ≥ 2, despite the fact that it is consistent with rationality and common belief of rationality.

This last paragraph already suggests that the categorization given by the level-k model may overestimate

the extent of bounded reasoning: If a strategy is consistent with RmBR, then it is consistent with (m+1)-

steps of reasoning about rationality. But it may also be consistent with (m+ 1)-steps of reasoning about

rationality and subsequent steps of reasoning about irrationality. And, similarly, if a strategy is consistent

with RmBR, then it is also consistent with (at least) (m+1) steps of interactive reasoning, e.g., reasoning

through sentences of the form “I think, you think, . . ..”

That said, this conclusion rests on a particular identification assumption. To better understand the

assumption, return to the statement that any m-rationalizable strategy is consistent with R(m − 1)BR.

There is an important background assumption: that players have a “rich” set of hierarchies of beliefs. The

implicit identification assumption is that the analyst cannot rule out hierarchies of beliefs. If the analyst

knew that the players themselves rule out certain hierarchies of beliefs, then the predictions of R(m−1)BR

1This is also the idea behind Alaoui and Penta’s (2016) modification of the 11-20 game.
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may well be a strict subset of the m-rationalizable strategies. (See Chapter 7 in Battigalli, Friedenberg

and Siniscalchi, 2012 for examples.)

This implicit identification assumption is important for the level-k model. In the level-k model, the

analyst deliberately chooses an anchor and admits only hierarchies of beliefs that are faithful to the anchor.

The choice of the anchor (and so hierarchies) can rest on substantive arguments, such as which behavior

is viewed as salient in a particular setting. Or the analyst may hypothesize that hierarchies are faithful to

some anchor and attempt to estimate the anchor. In either case, the analyst hypothesizes that players rule

out hierarchies of beliefs inconsistent with the anchor.

With this in mind, we focus on a restricted inference problem, one where the analyst has an auxiliary

assumption that hierarchies of beliefs are faithful to an anchor. To formalize this inference problem, we

follow the approach in the epistemic game theory literature by modeling players beliefs with an epistemic

type structure. We focus on a class of such type structures, which we call level-k type structures. These

are type structures where players’ hierarchies of beliefs are generated by an anchor. An important level-k

type structure is, what we call, a complete level-k type structure. This is a level-k type structure that

induces a rich set of beliefs that are consistent with the anchor. In a sense, it is a type structure that does

not impose substantive restrictions on beliefs that go above and beyond the restrictions that stem from

the anchor. (See Sections 4.2 and 9.A.)

Level-k type structures are engineered to mimic the logic of the level-k model. Despite this, in a

complete level-k type structure, the predictions of R(m− 1)BR are exactly the m-rationalizable strategies.

(See Theorem 6.1.) Note, this is irrespective of the particular anchor that generates the complete level-k

type structure. Thus, the reasoning (or “cognitive”) process associated with the level-k solution concept

has the predictive power of rationalizability. This has important implications for the restricted inference

problem: For a particular anchor, a strategy can be categorized as level k (but not level m ≥ k + 1); yet,

there may be an m ≥ k so that the same strategy is consistent with RmBR, even when hierarchies of

beliefs are required to be consistent with the very same anchor.

Why is there a disconnect between the R(m−1)BR predictions in a complete level-k type structure and

the categorization from the level-k analysis? The key is that the level-k model only imposes an exogenous

restriction on the players’ partial hierarchies of beliefs. To better understand what this involves, consider

a level-2 player, who has a belief that other players have a belief (about play) that corresponds to the

anchor. This is distribution on the set of first-order beliefs—i.e., a distribution on what others believe

about the play of the game. A second-order belief, however, is a joint distribution about the strategies and

first-order beliefs—i.e., a joint distribution about how others play the game and what they believe about

the play of the game. The level-k model obtains the full second-order belief (i.e., the joint distribution)

endogenously, through the solution concept. In doing so, it imposes an auxiliary requirement that a player

cannot rationalize different strategies played by different first-order beliefs. Indeed, in a complete level-k

type structure, there will be types that mimic such level-2 players, called 2-types, and those types will not

be able to rationalize different strategies played with different first-order beliefs. However, there will be

other types—types that are consistent with the partial hierarchies of beliefs induced by the anchor—which

can rationalize different strategies played with different first-order beliefs. That is, by explicitly modeling

the hierarchies of beliefs consistent with the anchor, we can see that there is a richer set of mth-order beliefs

that are consistent with the anchor.

This raises the question: Are there different epistemic assumptions so that the predictions of round k

correspond exactly to the categorization of level k? If so, those assumptions would provide a sense in which
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the categorization of a subject as level k does correspond to k steps of reasoning. Theorem 7.1 provides an

answer in the affirmative. On the plus side, the logic behind the result mimics the logic associated with the

level-k model, suggesting that our approach (throughout this paper) is tight. On the other hand, as we will

discuss, the epistemic analysis points to an arguably new identification assumption: That is, in concluding

that a categorization of level k reflects k steps of reasoning about rationality, the analyst is imposing an

additional identification assumption, one that goes beyond the requirement that hierarchies are induced

by an anchor. (See Identification Assumption 2.) Importantly, that assumption appears difficult to verify

in practice. We discuss this further in Section 7.3.

It is worth emphasizing that the focus of our paper is on the interpretation of the level-k model as a

model of reasoning. Our central result shows that the reasoning (or “cognitive”) model typically associated

with the level-k solution concept has less predictive power than the level-k concept itself. As a consequence,

using the concept to evaluate reasoning in games can result in overestimating the extent to which there

is bounded reasoning. Of course, this does not question the usefulness of the level-k solution concept for

fitting behavior.

Literature This is not the first paper to point to difficulties in drawing inferences about how players

reason from the level k classification. The literature has pointed to at least four difficulties. First, it may

be difficult to ascertain the anchor that generates players’ beliefs. Toward that end, some papers have

suggested looking for a best-fitting anchor (Crawford and Iriberri, 2007; Wright and Leyton-Brown, 2019),

providing auxiliary evidence on the anchor (Costa-Gomes and Crawford, 2006; Brocas, Carrillo, Wang and

Camerer, 2014; Burchardi and Penczynski, 2014), or designing the game with the aim of making an anchor

highly salient (Arad and Rubinstein, 2012). Second, it may be that the players themselves are uncertain

about the anchor. (This is captured by Strzalecki’s, 2014, cognitive rationalizability and is in the spirit of

Section 2.3.2 in Alaoui and Penta, 2016.) Third, there may be measurement error or other noise in the

data, which may make it difficult to infer a categorization of level k from observed play. (See Stahl and

Wilson, 1995, Costa-Gomes and Crawford, 2006, and Cooper, Fatas, Morales and Qi, 2024.) Fourth, it

may be that the inferred levels of reasoning are not portable across games. (See Georganas, Healy and

Weber, 2015, Alaoui and Penta, 2016, Alaoui, Janezic and Penta, 2020, and Cooper, Fatas, Morales and

Qi, 2024.)

We abstract from these important concerns and study an idealized setting. In particular, we focus on

a setting where there is one anchor that generates players’ hierarchies of beliefs and that anchor is known

to the analyst. So, neither the players nor the analyst face uncertainty about the anchor. Moreover, there

is no measurement error or noise in the data. In addition, we ignore concerns about portability. We argue

that, even in this idealized setting, a classification of level k may overestimate the extent to which there is

bounded reasoning.

The paper sits within a growing literature aimed at bringing ideas from epistemic game theory to bear

on experimental data. (Examples include Kneeland, 2015, Ghosh, Heifetz and Verbrugge, 2016, Ghosh and

Verbrugge, 2018, Li and Schipper, 2020, Brandenburger, Danieli and Friedenberg, 2021, Friedenberg and

Kneeland, 2024, and Healy, 2024.) Moreover, it can be viewed as providing a bridge between the level-k

literature and epistemic game theory. Schipper and Zhou (2024) and Liu and Ziegler (2025) are two recent

attempts to provide such a bridge. Schipper and Zhou uses ideas from epistemic game theory to motivate

a notion of level-k reasoning in extensive-form games. Liu and Ziegler model a level-0 player as one that

has different payoffs from those specified in the game; it then uses rationalizability concepts to analyze
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the game of incomplete information and to draw connections to the level-k literature. The focus of these

papers differs from ours; in particular, they do not directly address the identification problem.

In the course of our analysis, we introduce the concept of a level-k type structure. This is a particular

epistemic type structure that induces hierarchies of beliefs consistent with the anchor. It differs from other

rich type structures meant to model the level-k and cognitive-hierarchy concepts, e.g., Kets (2010), Heifetz

and Kets (2013), and Strzalecki (2014). The type structures in Kets (2010) and Heifetz and Kets (2013)

capture finite-order beliefs about a primitive set of uncertainty, where the players may face uncertainty

about the length of other players’ finite-order beliefs. The type structure in Strzalecki (2014) captures

hierarchies of beliefs about numbers (interpreted as levels). Much like Kets and Heifetz and Kets, our

framework directly models beliefs about a primitive set of uncertainty. Unlike those papers, we do not

include types with finite-order beliefs or beliefs about finite levels. This stems from the differences in the

questions addressed by the papers. We are interested in understanding the extent to which behavior is

consistent with high levels of reasoning. As a consequence, the ability to rationalize the behavior with a

type structure that induces hierarchies of beliefs (as opposed to finite-order beliefs) is a plus. (See also the

discussion in Section 9E.)

2 Heuristic Treatment

Consider the game in Figure 2.1, where Player 1 is denoted by P1 (she) and Player 2 is denoted by P2

(he). We begin by applying the standard level-k solution concept to the game.

.9, .9 1, 0 4, 1 1, 0

0, 1 4, 4 1, 0 4, 0

1, 4 0, 1 0, 0 0, 3

0, 1 0, 4 3, 0 3, 3

a2 b2 c2 d2

a1

b1

c1

d1

P2

P1

Figure 2.1: A Common-Interest Game

The level-k solution concept begins by fixing an exogenous anchor for each player. For Pi=P1,P2 this

is a distribution µi on the strategies the other player, Pj, can choose. The level-1 strategies for Pi are the

strategies that are a best response under µi. The level-2 strategies for Pi are the strategies that are a best

response under a belief that assigns probability 1 to level-1 strategies of Pj. And so on.

Figure 2.2 describes the level-k behavior in four cases. In each case, P1 and P2 have the same anchor,

i.e., µ1 = µ2: This is either the uniform anchor, the anchor where Pi assigns probability 1 to Pj choosing

aj , the anchor where Pi assigns probability 1 to Pj choosing cj , or the anchor where Pi assigns probability

1 to Pj choosing dj . Notice, for each strategy si ∈ {ai, bi, ci} and each number m ≥ 1, there is some anchor

so that si is classified as level m for Pi.2

In each of these cases, there is no m so that di is classified as level m for Pi. If Pi has an anchor that

assigns 0.5 : 0.5 to cj : dj , then di would be level 1. But, regardless of Pj’s anchor, di cannot be be level

2As standard, we refer to the solution concept as “level-k.” We use the index m to refer to a particular realization of k.
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Uniform 1 to aj 1 to cj 1 to dj

Level-1 bi ci ai bi

Level-2 bi ai ci bi

Level-3 bi ci ai bi

Level-4 bi ai ci bi

Level-5 bi ci ai bi

· · · · · · · · · · · · · · ·

Figure 2.2: Level-k

2. More generally:

Claim 2.1. Suppose P1’s and P2’s anchors are given by (µ1, µ2). If di is level m for Pi, then m = 1.

The key observation is that di is optimal only under a distribution that assigns positive probability to both

cj and dj .
3 Therefore, if di is level 2 for Pi, it must be that both cj and dj are level 1 for Pj. However,

there is no anchor µj under which cj and dj are both a best response.4 Thus, di cannot be level 2 for Pi,

regardless of Pj’s anchor µj . And, similarly, dj is not level 2 for Pj, regardless of Pi’s anchor µi. This, in

turn, implies that di is not level 3 for Pi. And so on, for any m ≥ 3.

The Basic Inference Problem To recap, the strategies d1 and d2 are level 1 for some anchor. But, for

any anchor and any m ≥ 2, d1 and d2 are not level m.

Suppose the analyst observes only data about how the game is played (and not auxiliary data, say,

about players’ beliefs). In particular, suppose the analyst observes P1 play d1. What can the analyst infer

about how she reasons? Based on the level-k analysis, the analyst might be tempted to conclude that

P1 is rational—in the sense that she plays a best response to the anchor—but does not reason further.

Language used in the literature is that P1 believes P2 is nonstrategic, P1 reasons one step, or P1 has depth

of reasoning one.

However, in this game, the entire strategy set is rationalizable. Standard results in epistemic game

theory show that any rationalizable strategy is consistent with rationality and common belief of rationality.

(See, e.g., Brandenburger and Dekel, 1987 and Tan and Werlang, 1988.) Thus, the observation of d1 does

not, in and of itself, indicate that a P1 must believe P2 is not a “strategic” player.

More generally, the observation of d1 alone cannot point to a bound in the steps or depth of reasoning,

i.e., how many steps of “I think, you think, I think . . .” P1 can perform: P1 can only engage in rationality

and (m − 1) rounds of reasoning about rationality, if she can engage if m steps of “I think, you think, I

think . . .” Thus, if behavior is consistent with rationality and common belief of rationality then it is also

consistent with an unbounded depth of reasoning.

Rationality and Common Belief of Rationality It will be useful to understand better what goes

into the statement that di is consistent with rationality and common belief of rationality. To do so, we

3When Pj is restricted to playing a strategy in {aj , bj , dj} (resp. {aj , bj , cj}), di is dominated by a 0.25 : 0.75 mixture on
ai : bi (resp. by ai).

4If cj and dj have the same expected payoff, then the expected payoff of aj must be strictly higher.
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revisit a standard epistemic model, as applied to Figure 2.1. A hallmark of the model is that it describes

the players’ hierarchies of beliefs about the play of the game. This is a necessary step: To specify whether

P1 is rational, we must describe what beliefs P1 holds about P2’s play. After all, whether a strategy is a

best response for P1 depends on her first-order belief. By similar logic, to specify whether P1 does or does

not believe P2 is rational, we must describe P1’s joint belief about P2’s strategy and first-order belief, i.e.,

about his strategy and belief about P1’s play. After all, whether a strategy is rational or irrational for P2

will depend on his first-order belief. And so on.

We model these hierarchies of beliefs by an epistemic type structure, in the spirit of Harsanyi (1967).

The type structure has two ingredients. First, for each Pi, there is a set of types Ti. In our example, the

set of types is:

Ti = {ti, ui, vi, wi}.

Second, for each Pi, there is a belief map βi, taking each type of Pi to a belief about the strategy-type

pairs of Pj. In our example, the belief map is:

βi(ti)(cj , vj) = 1, βi(ui)(bj , uj) = 1, βi(vi)(aj , tj) = 1,

and

βi(wi)(cj , vj) = βi(wi)(dj , wj) =
1

2
.

Each type induces hierarchies of beliefs about the play of the game. For instance, type ti assigns probability

1 to Pj playing cj , while type vi assigns assigns probability 1 to Pj playing aj . Since ti assigns probability

1 to (cj , vj), ti assigns probability 1 to “Pj plays cj and believes I play ai.” And so on. See Section 3.2 for

the general case.

Now turn to rationality, belief in rationality, etc. Rationality is a property of a strategy-type pair:

Whether a strategy is rational or irrational depends on the belief that a player holds, where the belief

is specified by a type. For instance, the pair (ai, ti) is rational, since ai maximizes Pi’s expected payoffs

given the belief associated with ti. (The action ai is a best response to cj .) In fact, the set of rational

strategy-type pairs for Pi is:

Ri = {(ai, ti), (bi, ui), (ci, vi), (di, wi)}.

Observe that each type of Pi assigns probability 1 to “Pj is rational,” i.e., to the event Rj . Thus, each

type of Pi believes the other player is rational. So, Ri is also the set of strategy-type pairs for Pi that are

consistent with rationality and 1st-order belief of rationality. From here, we can iterate to conclude that

Ri is, in fact, the set of strategy-type pairs consistent with rationality and common belief of rationality

(RCBR). As a consequence, each of ai, bi, ci, and di is consistent with RCBR.

Hierarchies of Beliefs vs. Anchored Beliefs We have seen that the strategy di is, in fact, consistent

with RCBR. To show this, we produced a specific model of P1’s and P2’s hierarchies of beliefs and pointed to

a type in that model, namely wi, so that (di, wi) is rational, believes Pj is rational, and so on. Importantly,

those hierarchies of beliefs were inconsistent with the idea that the players’ hierarchies are generated by

an anchor. Take, for instance, the case where P1’s and P2’s anchors (µ1, µ2) both assign probability 1 to

the other player Pj choosing cj . Type t1 has the first-order belief associated with P1’s anchor µ1 and type

v1 believes P2 has the first-order belief associated with P2’s anchor µ2. But, types u1 and w1 do not have

hierarchies of beliefs consistent with this anchor. Similarly, if P1’s and P2’s anchors (µ1, µ2) both assign
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probability 0.5 : 0.5 to the other player Pj choosing cj or dj , then type w1 has first-order beliefs associated

with P1’s anchor. But no other type has hierarchies consistent with this anchor. And so on. (See Example

5.1 for a more complete argument.)

Arguably, the spirit of level-k analysis involves a restriction on the hierarchies of beliefs that players can

hold. In particular, the analysis imposes the substantive assumption that the players’ beliefs are generated

by a particular anchor. This assumption is important in categorizing a particular strategy as level m for

some m ≥ 1.

This raises the question: Suppose players’ hierarchies of beliefs are generated by an anchor. In that

case, would the observation of di allow the analyst to conclude that Pi’s behavior is inconsistent with Pi

being rational and believing Pj is rational? That is, would the observation of di point to a form of bounded

reasoning?

The Restricted Inference Problem To address the question, our analysis focuses on, what we call,

(epistemic) level-k type structures. Much as above, these are type structures that involve type sets and

belief maps for each of P1 and P2. But, now, the type set of Pi can be decomposed into a set of 1-types

(T 1
i ), a set of 2-types (T 2

i ), etc. The 1-types each have first-order beliefs associated with the anchor. The

2-types each assign probability 1 to Pj having a 1-type (i.e., their marginal beliefs on Tj assign probability

1 to T 1
j ). And so on. Importantly, a level-k type structure is defined relative to a particular anchor and only

induces hierarchies of beliefs consistent with that anchor. (See Proposition 5.1.) Thus, the type structure

cannot induce all hierarchies of beliefs. (See Proposition 5.2.)

In principle, a level-k type structure can impose substantive assumptions about beliefs that go above and

beyond the assumption that players’ hierarchies are generated by the anchor. To rule out such substantive

assumptions, we focus on, what we call, a complete level-k type structure. This is a level-k type structure

that satisfies the following requirement: For every belief that assigns probability 1 to the m-types of Pj,

there is an (m+ 1)-type of Pi that induces that belief. Proposition 5.3 shows that there exists a complete

level-k type structure that induces a rich set of beliefs consistent with the anchor. (See, also, Section 9A.)

The main theorem provides the behavioral implications of rationality and mth-order belief of rationality

(RmBR) in a complete level-k type structure.

Main Theorem (Theorem 6.1). In any complete level-k type structure (for a particular

anchor), the predictions of RmBR are exactly the (m+ 1)-rationalizable strategies.

Thus, even when we focus on models of hierarchies of beliefs that are consistent with the anchor, each

(m+ 1)-rationalizable strategy is consistent with RmBR.

Return to Figure 2.1. If we observe P1 play d1, we cannot conclude that there is a bound m so that

the behavior must reflect RmBR—importantly, we cannot draw this conclusion even if we assume that

the hierarchies of beliefs are generated by a particular anchor. Thus, the categorization of d1 as level-1

does not allow us to draw a conclusion about bounded reasoning—at least not without additional auxiliary

assumptions about how players reason or without a richer dataset. Section 7 discusses such additional

auxiliary assumptions and the difficulty of verifying those assumptions in the data.
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3 The Environment

We begin with mathematical preliminaries used throughout the paper. Fix a metrizable set Ω and endow

Ω with the Borel σ-algebra. We will refer to an element of the Borel σ-algebra as an event. Write ∆(Ω)

for the set of Borel probability measures on Ω and endow ∆(Ω) with the topology of weak convergence.

Let I be a finite index set and (Ωi : i ∈ I) be a collection of metrizable sets. Write Ω−i =
∏

j∈I\{i} Ωj

and Ω =
∏

i∈I Ωj . Endow the product of metrizable spaces with the product topology. Given a second

collection of metrizable sets (Φi : i ∈ I) and measurable maps fi : Ωi → Φi, write f−i : Ω−i → Φ−i for

the associated product map, i.e., if ω−i = (ωj : j ̸= i), then f−i(ω−i) = (fj(ωj) : j ̸= i). If each fi is

measurable (resp. continuous), then each f−i is also measurable (resp. continuous).

Fix metrizable sets Ω and Φ and let f : Ω → Φ be a measurable map. The image measure of f under

µ ∈ ∆(Ω) is a measure ν ∈ ∆(Φ) where, for each Borel E ⊆ Φ, ν(E) = µ(f−1(E)). Let f : ∆(Ω) → ∆(Φ)

map each ν ∈ ∆(Ω) to the image measure of f under ν. Note, f is measurable and, if f is continuous,

f is continuous. (For measurability, see Friedenberg and Keisler, 2021, Lemma A.1; for continuity, see

Aliprantis and Border, 2007, Theorem 14.14.)

Given a Borel set Φ ⊆ Ω1 × Ω2, write projΩ1
: Φ → Ω1 for the projection mapping, i.e., the mapping

with projΩ1
(ω1, ω2) = ω1. If µ ∈ ∆(Φ), write marg Ω1

µ for the measure ν ∈ ∆(Ω1) with ν(E1) =

µ((projΩ1
)−1(E1)) for each Borel E1 ⊆ Ω1.

3.1 The Epistemic Game

Throughout the paper, fix a game G = (Si, πi : i ∈ I): Here, I is a finite set of players, Si is a finite

strategy set for player i, and πi : Si × S−i → R is player i’s payoff function. The game is non-trivial, in

that each player has at least two strategies (that is, |Si| ≥ 2). Extend πi to πi : Si ×∆(S−i) → R in the

usual way.

An epistemic game appends to the game a description of the players’ hierarchies of beliefs about the play

of the game. Following Harsanyi (1967), we use type structures as implicit descriptions of the hierarchies

of beliefs.

Definition 3.1. An S-based type structure is some T = (S−i, Ti, βi : i ∈ I) where:

(i) for each i, Ti is a metrizable set of types for i, and

(ii) for each i, βi : Ti → ∆(S−i × T−i) is a measurable belief map for i.

In an S-based type structure, each type ti of player i is mapped to a joint belief about the strategies and

types of the other players. Because the set of strategies is fixed throughout our analysis, we often refer to

an S-based type structure as, simply, a type structure. When each Ti is (at most) countable, we call the

type structure countable.

3.2 Type Structures and Hierarchies of Beliefs

The epistemic game describes the rules of the game, payoff functions, and hierarchies of beliefs about the

play of the game. The first two ingredients are captured by G and the latter ingredient is captured by a

type structure. The example in Section 2 indicates how types induce hierarchies of beliefs. In particular,

each type t̃i induces a belief about the strategies about other players, given by marg S−i
βi(t̃i). For instance,

9



type wi’s first-order belief assigns 0.5 : 0.5 to cj : dj . Moreover, because each type has a joint belief about

the strategy and type of the other player, each type has a joint belief about the strategy and first-order

belief of the other player. For instance, type wi assigns 0.5 to “Pj will play cj and believes that I will play

ai” and 0.5 to “Pj will play dj and assigns 0.5 : 0.5 to me playing ci : di.” These joint beliefs constitute

the type’s second-order beliefs. And so on.

Begin by inductively describing the set of mth-order beliefs of player i. Set X1
i = S−i and H

1
i = ∆(X1

i )

and note both are compact metric spaces. Assume the sets Xm
i and Hm

i have been defined and are compact

metric spaces. Set:

Xm+1
i = {(s−i, h

1
−i, . . . , h

m
−i) ∈ Xm

i ×Hm
−i : if m ≥ 2 then, for each j ̸= i, margXm−1

j
hmj = hm−1

j , }

and Hm+1
i = ∆(Xm+1

i ). These, too, are compact metric spaces. (See Friedenberg, 2010, Lemma A1 and

Remark A1.) The set Xm
i is player i’s mth-order space of uncertainty. The set Hm

i is player i’s set of

mth-order beliefs. Then

H∞
i = {(h1i , h2i , . . .) ∈

∏
m≥1

Hm
i : for each m, margXm

i
hm+1
i = hmi }

is player i’s set of hierarchies of beliefs.

For each m ≥ 1, there is a natural mapping δmi : Ti → Hm
i , specifying each type’s mth-order belief.

Type ti’s first-order belief is simply the marginal of βi(ti) on the strategies of the other players; that is,

δ1i (ti) = marg S−i
βi(ti). Type ti’s second-order belief, viz., δ

2
i (ti) = h2i , is a joint belief about strategies and

first-order beliefs: The probability that h2i assigns to an event in S−i ×H1
−i is the probability that βi(ti)

assigns to strategy-type pairs that induce that event. More precisely, for each event E−i ⊆ X1
i ×H1

−i =

S−i ×
∏

j ̸=i ∆(S−j):

h2i (E−i) = βi(ti)({(s−i, t−i) : (s−i, δ
1
−i(t−i)) ∈ E−i}).

Appendix A.1 formally describes the maps δmi : Ti → Hm
i . Given these maps, the map δi : Ti → H∞

i is

defined by δi(ti) = (δ1i , δ
2
i , . . .). If δi(ti) = hi (resp. δ

m
i (ti) = hmi ), say that type ti induces the hierarchy

of beliefs hi (resp. the mth-order belief hmi ). The set of hierarchies of beliefs for i induced by T is

δi(Ti) ⊆ Hi.

Of particular interest is a type structure that induces all hierarchies of beliefs.

Definition 3.2. Call the type structure T ∗ hierarchy-complete if, for each S-based type structure T ,

T ∗ induces the hierarchies of beliefs induced by T .5

To better understand the concept, consider a hierarchy-complete type structure T ∗ = (S−i, T
∗
i , β

∗
i : i ∈ I),

associated with hierarchy maps δ∗i : T ∗
i → H∞

i . If T = (S−i, Ti, βi : i ∈ I) is associated with hierarchy

maps δi : Ti → H∞
i , then δi(Ti) ⊆ δ∗i (T

∗
i ). Thus, a hierarchy-complete type structure induces any hierarchy

of beliefs that can be induced by any type structure. The canonical constructions of a so-called universal

type structure (e.g,. Mertens and Zamir, 1985, Brandenburger and Dekel, 1993, Heifetz and Samet, 1998,

etc) are hierarchy-complete.

5Some papers refer to this property as “universal.” However, since the phrase universal is also used differently in the
literature, we refer to this property as “hierarchy-complete.”
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4 Hierarchies of Beliefs Induced by the Anchor

The level-k solution concept is tied to an anchor µ = (µi : i ∈ I) ∈
∏

i∈I ∆(S−i); call µi i’s anchor.

Remark 4.1. The literature will often fix a symmetric game and look at symmetric anchors, i.e., anchors

where each player has the same belief about how others play the game. (There are important exceptions.)

Because we apply the ideas to arbitrary games (i.e., not necessarily symmetric games), we do not restrict the

anchors to be symmetric. To be sure, players’ anchors can be symmetric, but they need not be symmetric.

Likewise, anchors can involve a belief that is independent or correlated. They can involve degenerate or

non-degenerate beliefs. Etc.

Conceptually, an anchor specifies a first-order belief for each player i. This implicitly limits the hier-

archies of beliefs the players consider possible. However, importantly, the anchor alone does not uniquely

pin down those hierarchies. Instead, it restricts, what we will call, the hierarchies of partial beliefs. This

section describes how the anchor restricts the partial hierarchies and, in turn, restricts the hierarchies of

beliefs.

4.1 Hierarchies of Partial Beliefs

Much as types induce hierarchies of beliefs, they induce hierarchies of partial beliefs. To understand the

difference between hierarchies of beliefs and hierarchies of partial beliefs, return to the example in Section

2. Each type t̃i induces a belief about the strategies about other players, given by marg S−i
βi(t̃i). This is

both the type’s first-order belief and first-order partial belief. That is, there is no distinction that arises at

the first-order. While a type’s second-order belief is a joint belief about strategies and first-order beliefs,

the type’s second-order partial belief is a belief only about first-order beliefs. So, type wi’s second-order

partial belief assigns 0.5 to “Pj believes that I will play ai” and 0.5 to “Pj assigns 0.5 : 0.5 to me playing

ci : di.” It does not include the statement that wi assigns probability 0.5 to “Pj will play cj and believes

I will play ai.” As a consequence, it does not include information that, if wi believes “Pj believes that I

will play ai,” then wi believes “Pj will play cj .” This is the sense in which this hierarchy is partial.

We now specify the hierarchies of partial beliefs. Set P 1
i = ∆(S−i) and note that it is a compact metric

space. Assume sets Pm
i have been defined and these are each compact metric spaces. Set Pm+1

i = ∆(Pm
−i)

and note that it too is a compact metric space. Notice P 2
i = ∆(

∏
j∈I\{i} ∆(S−j)) is the set of beliefs about

first-order (partial) beliefs, while H2
i = ∆(

∏
I\{i}(S−j ×∆(S−j))) is the set of joint beliefs about strategies

and first-order beliefs. More generally, the set Pm
i is player i’s set of mth-order partial beliefs. Write

P∞
i =

∏
m≥1

Pm
i

for the set of hierarchies of partial beliefs.

The anchor implicitly imposes a restriction on the mth-order partial beliefs that players consider possi-

ble. For instance, if i is a level-1 player, then i’s first-order partial belief must correspond to the anchor. If

i is a level-2 player, then i’s second-order partial belief must assign probability 1 to the first-order beliefs

µ−i := (µj : j ∈ I\{i}). And so on.

More generally, an anchor µ = (µi : i ∈ I) ∈
∏

i∈I ∆(S−i) uniquely determines mth-order partial

beliefs, pmi,µ: Set p
1
i,µ = µi. Assuming each pmi,µ ∈ Pm

i has been defined, let pm+1
i,µ ∈ Pm+1

i be the measure

with pm+1
i,µ ({pm−i,µ}) = 1.
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4.2 Hierarchies of Beliefs Consistent with the Anchor

There is a natural mapping from hierarchies of beliefs to hierarchies of partial beliefs, viz. ηi : H
∞
i → P∞

i .

To understand the mapping, consider ηi(h
1
i , h

2
i , . . .) = (p1i , p

2
i , . . .). Intuitively, p1i = h1i since there is no

distinction between first-order beliefs and first-order partial beliefs. Moreover, p2i = marg∏
j ̸=i ∆(S−j)h

2
i ,

since a second-order partial belief simply provides information about beliefs over first-order partial beliefs

and first-order partial beliefs are the first-order beliefs. Since there is a distinction between second-order

partial beliefs and second-order beliefs, the relationship between h3i and p3i requires care.

To define the mapping ηi, it will be convenient to define sets that correspond to i’s mth-order space

of partial uncertainty, i.e., Y m
i . Set Y 1

i = S−i and, for m ≥ 2, Y m
i = Pm−1

−i . Note that Pm
i = ∆(Y m

i ).

Now, inductively define continuous maps η̂mi : Xm
i → Y m

i and ηmi : Hm
i → Pm

i : First, take η̂1i : X1
i → Y 1

i

and η1i : H1
i → P 1

i to be the identity maps; note that these are continuous. Next, assume continuous

maps η̂mi : Xm
i → Y m

i and ηmi : Hm
i → Pm

i have been defined. Define η̂m+1
i : Xm+1

i → Y m+1
i so that,

for each xm+1
i = (xmi , h

m
−i) ∈ Xm+1

i , η̂m+1
i (xmi , h

m
−i) = ηm−i(h

m
−i). Since each ηmj is continuous, η̂m+1

−i is

continuous. Now let ηm+1
i = η̂m+1

i
, so that ηm+1

i (hm+1
i ) is the image measure of hm+1

i under η̂m+1
i ; note

that ηm+1
i = η̂m+1

i
is continuous since η̂m+1

i is continuous.

The map ηi : H
∞
i → P∞

i is given by ηi(h
1
i , h

2
i , . . .) = (η1i (h

1
i ), η

2
i (h

2
i ), . . .). Thus it maps each hierarchy

of beliefs to its associated hierarchy of partial beliefs.

Definition 4.1. Say a hierarchy hi = (h1i , h
2
i , . . .) is consistent with the anchor µ = (µi : i ∈ I) ∈∏

i∈I ∆(S−i) if there exists some m ≥ 1 so that ηmi (hmi ) = pmi,µ.

If hi = (h1i , h
2
i , . . .) is consistent with the anchor, there is some mth-order belief that coincides with the

mth-order partial beliefs induced by the anchor. This captures the restriction on beliefs implicitly imposed

by the level-k solution concept. (Note, there, a player classified as level m has mth-order partial beliefs

induced by the anchor, but may not have nth-order partial beliefs induced by the anchor for some n ̸= m.)

5 Level-k Type Structures

We will be interested in type structures that only induce hierarchies of beliefs consistent with the anchor.

This will be captured by a level-k type structure.

5.1 Level-k Type Structure

Fix a type structure T = (S−i, Ti, βi : i ∈ I). Say Ci = {Tm
i : m = 1, 2, . . .} is a Borel cover of Ti if

(i) each Tm
i is a non-empty Borel subset of Ti, and (ii)

⋃
m≥1 T

m
i = Ti. Note, a countable partition of Ti

is a Borel cover, if each of its members is Borel. But, a Borel cover need not be a partition.

Definition 5.1. Call T = (S−i, Ti, βi : i ∈ I) a level-k type structure (for µ = (µi : i ∈ I)) if, for each

i, there exists a Borel cover Ci = {Tm
i : m = 1, 2, . . .} of Ti so that the following hold:

(i) if ti ∈ T 1
i , then marg S−i

βi(ti) = µi, and

(ii) for each m ≥ 1, if ti ∈ Tm+1
i , then βi(ti)(S−i × Tm

−i) = 1.

In a level-k type structure, we can decompose each player’s types into non-empty sets T 1
i , T

2
i , . . .. We will

refer to types in Tm
i as i’s m-types. The 1-types have first-order beliefs associated with the anchor µ.

12



The 2-types assign probability 1 to the 1-types. More generally, the (m+ 1)-types assign probability 1 to

the m-types.

Example 5.1. To understand better what goes into a level-k type structure, return to the example of

Section 2. That type structure is not a level-k type structure for any anchor µ = (µ1, µ2). Indeed, suppose,

contra hypothesis, that this type structure is a level-k type structure for some anchor µ. Then, for each i,

there exists some mi so that ui is an mi-type. Observe that, if ui is an mi-type then u−i is an (mi − 1)-

type. This implies that there must be some player i for which ui ∈ T 1
i and, therefore, µi(bj) = 1. As a

consequence, ui is the unique 1-type for that i.

Without loss of generality, suppose T 1
1 = {u1}. Since, T 1

1 = {u1} and T 2
2 ̸= ∅, it follows that T 2

2 = {u2}.
Iterating this argument,

T 2m−1
1 = {u1} and T 2m

2 = {u2}

for each m ≥ 1.

Observe, since t2, u2, v2, and w2 have distinct first-order beliefs, T 1
2 must be a singleton. Since each

t̃1 ∈ T 2
1 must assign probability 1 to T 1

2 , the set T 2
1 must also be a singleton. Now, by induction, for each

i and each m, Tm
i must be a singleton. But, then, there is no m ≥ 1 so that w1 is an m-type.

Thus, there can be no anchor µ so that the example is classified as a level-k type structure for µ.

Indeed, an analogous argument shows that there is no µ so that the type structure induces only hierarchies

of beliefs consistent with µ.

This argument reflects the fact that, in the example, the type structure induces hierarchies of beliefs

that are inconsistent with a single anchor. By contrast, level-k type structures only induce hierarchies of

beliefs consistent with an anchor.

Proposition 5.1. Let T be a level-k type structure for µ. Then each hierarchy of beliefs induced by T is

consistent with µ.

Appendix A.2 proves Proposition 5.1. The proof follows from a stronger claim: If a type is classified as

an m-type (according to any appropriately chosen cover), then the type must induce the mth-order partial

beliefs pmi,µ. So 1-types have first-order (partial) beliefs that coincide with the anchor; 2-types believe other

players’ first-order (partial) beliefs coincide with the anchor; and so on. This provides an interpretation of

the m-types.

Because there are (always) hierarchies of beliefs that are inconsistent with the anchor, no level-k type

structure can induce all hierarchies of beliefs.

Proposition 5.2. If T = (S−i, Ti, βi : i ∈ I) is a level-k type structure for µ, then T is not hierarchy-

complete.

To understand the result, fix an anchor µ = (µi : i ∈ I) and a profile of first-order beliefs ν = (νi : i ∈ I)

where each µi ̸= νi. There is a profile of hierarchies of beliefs (hi : i ∈ I) at which player i’s first-order

beliefs are νi and this fact is commonly believed. But, that hierarchy cannot be induced by any type in any

level-k type structure for µ: In a level-k type structure, an m-type must induce mth-order partial beliefs

consistent with the anchor µ. But, for each m, hi induces m
th-order partial beliefs that are inconsistent

with the anchor.
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5.2 Hierarchies Induced by Level-k Type Structures

While a level-k type structure must induce hierarchies of beliefs consistent with the anchor µ, two different

level-k type structures (for µ) may induce different hierarchies of beliefs. The next two examples illustrate

this fact.

Example 5.2. Consider a two-player game where each Si = {2i,3i}. Suppose the anchor µ = (µ1, µ2)

is such that, for each i, µi(2−i) = 2
3 . Consider a type structure T with the following properties: Set

T1 = T2 = N+. Take each βi(1) so that βi(1)(2−i, 2) =
2
3 and βi(1)(3−i, 3) =

1
3 . For m ≥ 2, take

βi(m)(2−i,m− 1) = 1 if m is even,

and

βi(m)(3−i,m− 1) = 1 if m is odd.

For each i, {Tm
i = {m} : m ≥ 1} is a Borel cover of Ti. Thus, T is a level-k type structure.

Example 5.3. Consider a two-player game where each Si = {2i,3i}. Suppose the anchor µ = (µ1, µ2)

is such that, for each i, µi(2−i) = 2
3 . Consider a type structure T with the following properties: Set

T1 = T2 = N+. Take each βi(1) so that βi(1)(2−i, 2) =
2
3 and βi(1)(3−i, 3) =

1
3 . For m ≥ 2, take

βi(m)(2−i,m− 1) = βi(m)(3−i,m− 1)) =
1

2
.

For each i, {Tm
i = {m} : m ≥ 1} is a Borel cover for T . Thus, T is a level-k type structure.

Examples 5.2-5.3 provide two different level-k type structures for a given anchor µ. In both type

structures, the 1-types have first-order (partial) beliefs associated with the anchor, i.e., they assign 2
3 : 1

3 to

2−i : 3−i. Likewise, in both type structures, the 2-type have second-order partial beliefs associated with

the anchor, i.e., the type ti = 2 assigns probability 1 to t−i = 1 and so probability 1 to the event that “the

other player assigns 2
3 : 1

3 to 2−i : 3−i.” And so on. In this sense, the types induce hierarchies of partial

beliefs consistent with the anchor, illustrating Proposition 5.1.

However, in these two examples, the type structures induce disjoint sets of hierarchies of beliefs. To

see this, observe that the first-order beliefs of m-types differs in these type structures, when m ≥ 2. In

Example 5.2, each such m-type has a degenerate belief, assigning probability 1 to either of 2−i or 3−i; in

Example 5.3, each such m-type has a non-degenerate belief, assigning 1
2 : 1

2 to 2−i : 3−i. Thus, for each

type m ≥ 2 in Example 5.2, there is no type n ≥ 1 in Example 5.3 that induces the same first-order beliefs,

a fortiori the same hierarchies of beliefs. And conversely, with Example 5.3 and Example 5.2 reversed.

Moreover, the 1-types induce distinct second-order beliefs. In Example 5.2, type 1 assigns probability 2
3

to “the other player chooses 2−i and assigns probability 1 to me choosing 2i;” however, in Example 5.3,

type 1 assigns zero probability to that same event.

5.3 Complete Level-k Type Structures

Proposition 5.1 says that a level-k type structure imposes the substantive assumption that the hierarchies

are induced by the anchor. But, Examples 5.2-5.3 illustrated that there may be multiple level-k type

structures, associated with the same anchor, which induce different hierarchies of beliefs. To understand
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why this arises, note that, in Examples 5.2-5.3 there is exactly one 2-type. Yet, there are many second-

order beliefs that a player can hold, even if the player has a second-order partial belief consistent with the

anchor. Both type structures rule out such second-order beliefs and, in doing so, they impose auxiliary

assumptions on players’ hierarchies of beliefs. These auxiliary assumptions on beliefs go above and beyond

the substantive assumptions imposed by the anchor. We will be interested in type structures that do not

impose these exogenous restrictions on beliefs (or, at least, minimize such exogenous restrictions).

Definition 5.2. Call T = (S−i, Ti, βi : i ∈ I) a complete level-k type structure (for µ = (µi : i ∈ I))

if, for each i, there exists a Borel cover Ci = {Tm
i : m = 1, 2, . . .} of Ti so that the following hold:

(i) if ti ∈ T 1
i , then marg S−i

βi(ti) = µi,

(ii) for each m ≥ 1, if ti ∈ Tm+1
i , then βi(ti)(S−i × Tm

−i) = 1, and

(iii) for each m ≥ 1 and each νi ∈ ∆(S−i × T−i) with νi(S−i × Tm
−i) = 1, there is a type ti ∈ Tm+1

i .

Call T a complete level-k type structure if there is some µ so that T is a complete level-k type

structure for µ.

Thus, T is a complete level-k type structure for µ if it is a level-k type structure that satisfies the following

additional requirement: For each belief that assigns probability 1 to the m-types, there is an (m+ 1)-type

of the player that holds that belief.

We can always find a complete level-k type structure.

Proposition 5.3. Fix some µ = (µi : i ∈ I). There exists a complete level-k type structure for µ, viz.

T ∗, that satisfies the following property: If T is a countable level-k type structure for µ, then T ∗ induces

the hierarchies of beliefs induced by T .

The proof of Proposition 5.3 constructs a particular level-k type structure T ∗ = (S−i, T
∗
i , β

∗
i : i ∈ I). The

construction has a rich set of 1-types, i.e., for each νi ∈ ∆(S−i × T ∗
−i) with marg S−i

νi = µi, there is a

1-type in T ∗
i that holds that belief.6 Thus, there are no restrictions on the beliefs of 1-types aside from the

requirement that their first-order beliefs coincide with the anchor (and that they have higher-order beliefs

consistent with the type structure). With this, condition (iii) implies that the construction has a rich set

of 2-types. And so on.

That said, there are hierarchies of beliefs consistent with the anchor that cannot be induced by any

level-k type structure, a fortiori any complete level-k type structure.7 Section 9A provides an example

and a broader discussion of missing hierarchies. Section 9B discusses why any missing hierarchies are

immaterial from the perspective of the inference problem.

6 The Inference Problem

We will be interested in the case where the analyst observes the strategy played and wants to infer the max-

imum level of reasoning about rationality consistent with observed behavior.8 Reasoning about rationality

will be captured by the epistemic conditions of rationality and mth-order belief of rationality.

6There are alternate constructions of complete level-k type structures that do not satisfy this richness property.
7It is also the case that the structure constructed in Proposition 5.3 is not type-complete, in the sense that the belief maps

are not onto.
8Of course, at times, authors augment the dataset with other observed variables of interest. Our concern is what the

analyst can learn from the observed play, which is the focus of many studies.
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6.1 Rationality and mth-order Belief of Rationality

An epistemic game (G, T ) induces a set of states S×T . So, a state describes a strategy-type pair for each

player. Rationality and mth-order belief of rationality is a property that a state may or may not possess.

Given some νi ∈ ∆(S−i), write BRi[νi] for the set of strategies si ∈ Si with πi(si, νi) ≥ πi(ri, νi) for all

ri ∈ Si.

Definition 6.1. Say (si, ti) is rational if si ∈ BRi[marg S−i
βi(ti)].

So a strategy-type pair (si, ti) is rational if si is a best response under the first-order belief associated with

ti, viz. marg S−i
βi(ti).

Definition 6.2. Say ti ∈ Ti believes E−i ⊆ S−i × T−i if E−i is Borel and βi(ti)(E−i) = 1.

So a type ti believes an event if it assigns probability 1 to the event (i.e., to the Borel set E−i). Given

some E−i ⊆ S−i × T−i, write

Bi(E−i) = {ti ∈ Ti : βi(ti)(E−i) = 1}

for the set of types that believe E−i. Note, if E−i = ∅, then Bi(E−i) = ∅.
Write R1

i for the set of rational strategy-type pairs. Inductively define Rm
i by

Rm+1
i = Rm

i ∩ (Si × B i(R
m
−i)).

Set R∞
i =

⋂
m≥1R

m
i .

Definition 6.3. The set of states at which there is rationality and mth-order belief of rationality

(RmBR) is Rm+1 =
∏

i∈I R
m
i . The set of states at which there is rationality and common belief of

rationality (RCBR) is R∞ =
∏

i∈I R
∞
i .

6.2 The Unrestricted Inference Problem

The unrestricted inference problem is not our focus of interest. Nonetheless, it will serve as a useful

benchmark to think about the restricted inference problem.

In the unrestricted inference problem, the analyst observes the strategy played. But the analyst does

not observe the set of hierarchies of beliefs players consider possible, i.e., the relevant type structure T . Nor

is the analyst prepared to make a substantive assumption about those beliefs. So, the relevant inference

question is: If the analyst observes si, what is the maximum m so that si is consistent with RmBR in

some type structure. Less formally, what is the maximum level of reasoning about rationality consistent

with observed behavior?

The answer to this question will depend on whether or not the observed strategy is m-rationalizable:

Set S0
i = Si and assume the sets Sm

i have been defined. A strategy si is in Sm+1
i if and only if there

exists some νi ∈ ∆(S−i) with si ∈ BRi[νi] and νi(S
m
−i) = 1. The set Sm

i is the set of m-rationalizable

strategies for player i. The set S∞
i =

⋂
m≥1 S

m
i is the set of rationalizable strategies for player i.

Proposition 6.1 (Known Result). Fix an epistemic game (G, T ).

(i) For each m ≥ 1, proj SR
m ⊆ Sm.

(ii) If T is hierarchy-complete, for each m ≥ 1, proj SR
m = Sm.
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(iii) If T is hierarchy-complete, proj SR
∞ = S∞.

See Brandenburger and Dekel (1987), Tan and Werlang (1988), Battigalli and Siniscalchi (2002), and

Friedenberg and Keisler (2021) for versions of this well-known result.

To understand how this result speaks to the unrestricted inference problem, consider two cases. First,

suppose the analyst observes si ∈ Sm
i \Sm+1

i , i.e., the analyst observes the player choose a strategy that is

m- but not (m + 1)-rationalizable. Then the analyst concludes the behavior is consistent with, at most,

R(m− 1)BR, i.e., m rounds of reasoning about rationality. In particular, si is consistent with R(m− 1)BR

in a hierarchy-complete type structure (part (ii)), but is inconsistent with RmBR in any other structure

(part (i)).

Second, suppose the analyst observes si ∈ S∞
i . Then, si is consistent with unbounded reasoning about

rationality. In particular, in any hierarchy-complete structure, there is a type ti so that (si, ti) satisfies

RCBR (part (iii)).

6.3 The Restricted Inference Problem

In the restricted inference problem, the analyst is prepared to make the substantive assumption that

hierarchies of beliefs are generated by some anchor µ. Thus, the relavent inference question is: If the

analyst observes si, what is the maximum m so that si is consistent with RmBR in some level-k type

structure for µ? One might think that the answer is tied to the level-k solution concept (for µ). However,

as the next result indicates, it is not:

Theorem 6.1. Fix an epistemic game (G, T ), where T is a level-k type structure for µ.

(i) For each m ≥ 1, proj SR
m ⊆ Sm.

(ii) If T is a complete level-k type structure for µ, for each m ≥ 1, proj SR
m = Sm.

So, despite the fact that the analyst makes the substantive assumption that the hierarchies of beliefs

are generated by a particular anchor µ, the nature of the inference problem is similar to the unrestricted

inference problem: If the analyst observes a strategy that ism-rationalizable but not (m+1)-rationalizable,

then the analyst concludes the behavior is consistent with, at most, R(m−1)BR in any level-k type structure

for µ. In particular, si is consistent with R(m− 1)BR in a complete level-k type structure for µ (part (ii))

but is inconsistent with RmBR in any level-k type structure for µ (part (i)).

Note, if the analyst observes si ∈ S∞
i , then the conclusion is more subtle. Part (ii) says that the

analyst cannot put a bound on reasoning about rationality, in the following sense: In a complete level-k

type structure for µ, the strategy si is consistent with RmBR for each m. That is, in a complete level-k

type structure, there are types t1i , t
2
i , . . . so that, for each m, (si, t

m
i ) ∈ Rm

i . (Note, in general, tmi will not

be an m-type.) However, this stops short of saying that si is consistent with RCBR. In fact, it may not be

consistent with RCBR, as the following example indicates.

Example 6.1. Consider the game in Figure 6.1. Note, for each player Pi, bi is a best response under any

νi ∈ ∆({a−i, b−i}), but ai is a best response under νi ∈ ∆({a−i, b−i}) if and only if νi(ai) = 1. The entire

strategy set is rationalizable.

Consider now a level-k type structure for µ, where each µi(a−i) < 1, and T = (S−i, Ti, βi : i ∈ I). We

will argue that there is no type ti ∈ Ti with (ai, ti) ∈ R∞
i .
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Figure 6.1: RCBR in a Level-k Type Structure

Suppose, contra hypothesis, that there is an (ai, ti) ∈ R∞
i . Then, ti’s first-order belief δ

1
i (ti) must assign

probability 1 to a−i. Write h1i,a = δ1i (ti). Type ti’s second-order belief δ
2
i (ti) must assign probability one to

(a−i, h
1
−i,a). Inductively, for each m ≥ 1, type ti’s (m+ 1)th-order belief δm+1

i (ti) must assign probability

one to (a−i, h
1
−i,a, . . . , h

m
−i,a).

Now, observe that, since T is a level-k type structure for µ, there is some ℓ ≥ 1 so that ti ∈ T ℓ
i . Thus,

type ti has an ℓth-order partial belief that corresponds to the anchor. But, this contradicts the fact that

δℓi (ti) = hℓi,a.
9

6.4 Proof of Theorem 6.1

We now turn to prove Theorem 6.1. Part (i) is an implication of Proposition 6.1’s part (i). For part (ii) it

suffices to show the reverse inclusion. In particular, we show the following: If si ∈ Sm
i , then there exists a

(m+ 1)-type tm+1
i ∈ Tm+1

i so that (si, t
m+1
i ) ∈ Rm

i . The proof is by induction on m.

First, fix si ∈ S1
i . Then there exists some νi ∈ ∆(S−i) such that si is a best response under νi. There

exists t2i ∈ T 2
i such that marg S−i

βi(t
2
i ) = νi. As such, (si, t

2
i ) ∈ R1

i .

Next, assume the result holds for m. Fix si ∈ Sm+1
i . Then there exists some νi ∈ ∆(S−i) such that si

is a best response under νi and νi(S
m
−i) = 1. By the induction hypothesis, there is a mapping fm−i : S

m
−i →

Tm+1
−i such that (s−i, f

m
−i(s−i)) ∈ Rm

−i. Construct ν̂i ∈ ∆(S−i × T−i) so that ν̂i(s−i, f
m
−i(s−i)) = νi(s−i).

In a complete level-k type structure, there exists some tm+2
i ∈ Tm+2

i such that βi(t
m+2
i ) = ν̂i. Since

marg S−i
βi(t

m+2
i ) = νi, (si, t

m+2
i ) ∈ R1

i . Moreover, for each n ≤ m, Rn
−i is Borel (Lemma B.3) and

Suppβi(t
m+2
i ) ⊆ Rm

−i ⊆ Rn
−i. So, t

m+2
i believes Rn

−i for each n ≤ m. As such, (si, t
m+2
i ) ∈ Rm+1

i .

7 The Level-k Inference Problem

Theorem 6.1 raises the question: If we identify a subject as level m but not level n for n > m, what

can we infer about the nature of the subject’s reasoning? To address the question, we begin by providing

an epistemic characterization of the level-k solution concept. We then discuss what the characterization

means from the perspective of inferring reasoning about rationality.

7.1 The Level-k Solution Concept

Often, papers define the level-k concept relative to a specific game. Because we want to define the concept

for all (simultaneous-move) games, we introduce an abstract definition. We then discuss choices made in

adopting the definition.

9This paragraph is formalized in the proof of Proposition 5.2.
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Definition 7.1. Set L1
i = BRi[µi]. Assume the sets Lm

i have been defined. Let Lm+1
i be the set of

strategies si so that there exists some νi ∈ ∆(S−i) satisfying

(i) si ∈ BRi[νi], and

(ii) νi(L
m
−i) = 1.

Say a strategy is level m (for µ) if si ∈ Lm
i . Call the set Lm

i as i’s level m behavior (for µ) and call the

set Lm =
∏

i∈I L
m
i the level m behavior (for µ). The level-k solution concept (for µ) is the profile

(L1, L2, . . .).

The level-k solution concept exogenously fixes a profile of first-order beliefs µ = (µi : i ∈ I), where µi

reflects i’s beliefs about the strategies others play. It then iterates best responses relative to those beliefs.

Level-1 behavior is the set of strategy profiles (si : i ∈ I) where each si is a best response under i’s anchor.

Level-2 behavior is the set of strategy profiles (si : i ∈ I) where each si is a best response under a belief

that assigns probability 1 to the level-1 behavior of other players. And so on.

Remark 7.1. Our definition allows for the fact that the sets Lm
i may not be a singleton. In fact, there

are prominent examples where the level-k solution concept has been applied, despite the fact that there

are multiple best responses. For instance, consider a 3-player beauty contest game (Ledoux, 1981; Nagel,

1995), where players simultaneously choose a number in {1, 2, 3, 4, 5}. A player wins if their choice is closest

to 2
3 of the average; they loose if some other bid is closer to 2

3 of the average. Ties split the win equally. If

the anchor assigns probability 1 to the arithmatic mean 3, then bidding either of 1 or 2 is a best response.

When there are multiple best responses, some papers assume players have a uniform belief over those

best responses. So, in the beauty contest example of the previous paragraph, a level-2 strategy must be a

best response under a belief that assigns 1
2 : 1

2 to 1 : 2. This imposes a secondary exogenous restriction on

beliefs—but one that depends on iterative best responses. We discuss this point further in Section 9D.

7.2 Epistemic Foundations for Level-k

Theorem 7.1. Fix an epistemic game (G, T ), where T is a level-k type structure for µ. For each player

i, fix covers Ci = {Tm
i : m = 1, 2, . . .} satisfying conditions (i)-(ii) of Definition 5.1 (resp. (i)-(ii)-(iii) of

Definition 5.2, if T is a complete level-k type structure).

(i) For each m ≥ 1, proj Si
(Rm

i ∩ (Si × Tm
i )) ⊆ Lm

i .

(ii) If T is a complete level-k type structure for µ, for each m ≥ 1, proj Si
(Rm

i ∩ (Si × Tm
i )) = Lm

i .

Much like Theorem 6.1, Theorem 7.1 fixes a level-k type structure for µ. Refer to Figure 7.1. Whereas

Theorem 6.1 focused on the behavioral implications of R(m− 1)BR (Figure 7.1(a)), Theorem 7.1 focuses

on the behavioral implications of R(m − 1)BR for only the m-types (Figure 7.1(b)). Part (i) says that, if

the m-types engage in R(m− 1)BR, their behavior is level m (for µ). Part (ii) adds that, in any complete

level-k type structure, any level m strategy for µ is consistent with R(m− 1)BR for an m-type.

To better understand the theorem, fix a level-k type structure for µ (not necessarily a complete level-k

type structure). A strategy is level 1 for µ if and only if there is a 1-type ti so that (si, ti) is rational.

(See Proposition B.1 part (i).) Note, this conclusion is stronger than that in part (i) and must only hold

for m = 1. In particular, a strategy si may be level 2 for µ even if there is no 2-type ti so that (si, ti) is

consistent with R1BR. The next example illustrates this claim.
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Ti

Si

Rm
i

m-Rationalizable

(a) Projection of R(m− 1)BR

Ti

Si

Rm
i

Tm
i

Level-m Behavior

(b) Projection of R(m− 1)BR and m-Types

Figure 7.1: Theorem 6.1 vs Theorem 7.1

Example 7.1. Refer to the game in Figure 7.2. Consider an anchor µ = (µ1, µ2) with each µi(c−i) = 1.

Observe that

Lm
i = {ai, bi} = Sm

i

for each m ≥ 1. We next show that there is a level-k type structure for µ so that (i) each m-rationalizable

strategy is consistent with R(m − 1)BR, but (ii) there is a level-k strategy for µ so that some si ∈ L2
i is

inconsistent with R1BR for every 2-type.

1, 1 0, 0 1, −1

0, 0 1, 1 1, −1

−1, 1 −1, 1 −1, −1

a2 b2 c2

a1

b1

c1

P2

P1

Figure 7.2

The type structure has type sets Ti = {ti, vi} × N and belief maps that satisfy the following: First,

βi(ti, 1)(c−i, (t−i, 2)) = βi(vi, 1)(c−i, (v−i, 2)) = 1 and βi(ti, 2)(a−i, (t−i, 1)) = βi(vi, 2)(a−i, (v−i, 1)) = 1.

Second, βi(ti, 3)(a−i, (t−i, 2)) = βi(vi, 3)(c−i, (v−i, 2)) = 1. Third, for each m ≥ 4, βi(ti,m)(a−i, (t−i,m−
1)) = βi(vi,m)(b−i, (v−i,m− 1)) = 1.

Note, this is a level-k type structure for µ associated with covers Ci = {{ti, vi} × {m} : m ≥ 1}. For

each m, proj Si
Rm

i = {ai, bi}. However, proj Si
(R2

i ∩ T 2
i ) = {ai} ⊊ Lm

i .

Example 7.1 features a “rich” level-k type structure, in the sense that there are enough beliefs so that all

the m-rationalizable strategies are consistent with R(m− 1)BR. Thus, for this specific type structure, part

(i) of Theorem 6.1 can be strengthened from inclusion to equality. Despite the type structure being rich

in this sense, it does not have a rich set of 2-types. As a consequence, there are level-2 strategies that are

inconsistent with R1BR for each 2-type. Part (ii) of Theorem 7.1 implies that, when there is a “rich” set

of 2-types (in the sense of the requirement associated with a complete level-k type structure), any level-2

strategy is consistent with R1BR for some 2-type.
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While a complete level-k type structure features a sufficiently “rich” set of 2-types, 3-types, etc., it is

important to note that it does not induce a rich set of beliefs: In particular, we saw that a complete level-k

type structure cannot induce all hierarchies of beliefs.

7.3 Identifying Levels of Reasoning about Rationality

Suppose the analyst observes a player choose some strategy s∗i so that (i) s∗i is level m ≥ 1 (for µ), but

(ii) s∗i is not level n (for µ) for any n > m. What can the analyst infer about how the player reasons about

rationality? We first address the question in the context of the unrestricted inference problem, then in the

context of the restricted inference problem, and finally in the context of Theorem 7.1. To do so, we use

the following (well-known) fact: If s∗i is level m then s∗i is m-rationalizable. (See Lemma B.4.)

In the unrestricted inference problem, the analyst only observes the strategy s∗i and the analyst is not

prepared to make an assumption about the hierarchies of beliefs that players consider possible. Since s∗i
is level m, the analyst concludes that s∗i is consistent with R(m − 1)BR in some type structure. Because

an (m+1)-rationalizable strategy need not be level-(m+1), the strategy s∗i might well be consistent with

RmBR in some type structure, even though it is not level-(m + 1) for µ. The analyst can only conclude

that s∗i is inconsistent with RmBR if the strategy is not (m + 1)-rationalizable. This is an implication of

Proposition 6.1.

In the restricted inference problem, the analyst is willing to make a substantive assumption about the

players’ beliefs:

Identifying Assumption 1. There is some anchor µ and some n ≥ 1 so that the player who chose s∗i
has the beliefs associated with an n-type in a level-k type structure for µ.

Theorem 6.1 implies that, despite this identification assumption, the nature of the inference does not

change: The analyst can conclude that s∗i is consistent with R(m − 1)BR, but cannot rule out that it is

also consistent with RmBR, unless s∗i is also fails (m+ 1)-rationalizability.

Theorem 7.1 suggests a stronger conclusion, based on an additional auxiliary assumption above As-

sumption 1:

Identifying Assumption 2. If a player is an n-type in some level-k type structure for µ, then the player

reasons according to R(n− 1)BR.

Under Assumptions 1-2, the analyst can conclude that s∗i is consistent with R(m− 1)BR and inconsistent

with RnBR for any n ≥ m: Since, for each n ≥ m + 1, s∗i is not level n (for µ), there is no level-k type

structure (for µ) and n-type thereof, ti, so that (s∗i , ti) is consistent with R(n− 1)BR. (This uses Theorem

7.1.) Then, the identifying assumptions rule out that the behavior s∗i was generated by a player that

reasons according to RmBR, a fortiori RnBR for any n > m.

It is worth emphasizing the nature of this approach to identification, especially relative to standard

critiques in the literature. It is understood that the level-k approach implicitly assumes that behavior is

generated by subjects who have (partial) beliefs (of some order) induced by an anchor. This assumption fits

with Assumption 1 and has itself received criticism. (Refer back to page 4.) The analysis here highlights the

importance of Assumption 2, above and beyond Assumption 1. A generous interpretation of Assumption

2 is: If subjects hold partial nth-order beliefs consistent with the anchor, then they reason according to

21



R(n − 1)BR.10 This is an assumption that a player’s nth-order beliefs determine the extent to which the

player reasons about rationality—an assumption that would be hard to falsify or verify in practice.

Remark 7.2. This section asked: What can the observer infer about how a player reasons about rationality,

if they observe a strategy that is level m but not level n for any n > m. It is worth emphasizing that

if behavior is consistent with reasoning about rationality beyond level m, then it is also consistent with

other forms of reasoning beyond level m. For instance, it would be consistent with unbounded interactive

reasoning—i.e., statements of the form “I think, you think, etc. . ..” In some games (including games of

substantive interest), it is also consistent with reasoning about irrationality beyond level m.

8 Applications

The level-k model has served as an important lens through which experimentalists have evaluated bounded

reasoning. This section revisits three prominent games—each studied broadly in the experimental literature—

through the lens of Theorem 6.1. It argues that, even when the hierarchies are generated by the anchors

that the experimental literature has focused on, the observed behavior is often consistent with higher levels

of reasoning about rationality.

8.1 Beauty Contest

The beauty contest game was initially studied by Ledoux (1981) and Nagel (1995). Each of |I| ≥ 3

players compete for a prize, whose value is 1. They do so by simultaneously choosing a number si ∈
{x, x + ∆, . . . , x + κ∆}, where x ≥ 0, ∆ > 0 and κ ≥ 1 is an integer. Player i is a winner if her chosen

number best matches a fraction p ∈ (0, 1) of the average strategy chosen. That is, given a strategy profile

s = (sj : j ∈ I), the set of winners is

W (sj : j ∈ I) = {i ∈ I : |si −
p

|I|
∑
j∈I

sj | ≤ |sℓ −
p

|I|
∑
j∈I

sj | for each ℓ ∈ I}.

Player i’s payoff function is given by

πi(s) =

 1
|W (s)| if i ∈W (s)

0 otherwise.

As an example, suppose |I| = 3, the set of strategies is {0, 1, 2, 3, 4, 5}, and p = 2
3 . Consider an anchor

µ, where each µi is uniform. Given this anchor, player i’s expected payoff is maximized by choosing 1.11

Thus, L1
i = {1} and, for each m ≥ 2, Lm

i = {0}. Yet, even if players’ hierarchies of beliefs are generated

by the uniform anchor, observing si ∈ {1, 2, 3, 4} is consistent with a higher bound on reasoning about

rationality. To see this, note that, for each m ≥ 1,

Sm
i =

{0, . . . , 5−m} if 5 ≥ m

{0} if m ≥ 6.

10This is indeed generous. In particular, n-types are associated with partial nth-order beliefs consistent with the anchor,
but the partial nth-order beliefs do not uniquely determine whether a type is an n-type.

11The expected payoff from 1 is approximately .65, which is higher than the expected payoffs of the other strategies: for 0
it is .31, for 2 it is .62, for 3 it is .31, for 4 it is .09, and for 5 it is .01.
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So, even if players beliefs are generated by the anchor, an observation of si = 2 (resp. si = 1) is consistent

with R1BR (resp. R2BR).

The particular parameterization of the game is important for understanding the extent to which be-

havior in the beauty contest can indicate bounded reasoning. (Again, even if the beliefs are generated by

an anchor.) To see this, set

x̂(I,∆, p) =
∆(|I| − 2p)

2|I|(1− p)
.

Seel and Tsakas (2017) show that, for each m ≥ 1, the m-rationalizable strategies take the following form:

Sm
i =

{x, . . . , x+ (κ−m)∆} if κ ≥ m and x+ (κ−m+ 1)∆ > x̂(I,∆, p)

Sm−1
i otherwise.

To understand the characterization more fully, focus on two extremes. First, suppose x + κ∆ ≤
x̂(I,∆, p). (This will, for instance, be the case when the actions are {0, 1, 2, 3, 4, 5}, p = .95, and |I| ≥ 4.)

In this case, any strategy is consistent with R1BR, R2BR, R3BR, etc. . ., in a complete level-k type structure

(for µ). Second, suppose that x +∆ > x̂(I,∆, p). In that case, player i always wins the full prize, if the

other players choose the same action and player i undercuts the other players by ∆. So, all but the highest

strategy is 1-rationalizable; all but the top two strategies are 2-rationalizable, etc. As such, in a complete

level-k type structure (for µ), a strategy x + λ∆ may be consistent with R(m − 1)BR even though there

is no n ≥ m so that x+ λ∆ is categorized as level n (for µ).

In experiments, the grid size is often small relative to p and |I|. More concretely, we can think of a

player’s strategy set as a finite subset of [0,∞), with a lowest strategy of x and a highest strategy of x > x.

Then, κ∆ represents the bound on the available strategies, i.e., κ∆ = x − x. Experiments typically set

x − x and implement a fine grid; this is captured by ∆ small and κ high. (See the discussion in Section

9F for a formalization.) With a fine grid, rationalizability results in eliminating strategies “slowly.” For

example, take |I| = 3, p = 2
3 , and [x, x] = [0, 1] with a grid given by (∆n, κn) = ( 1n , n). When n = 2,

si =
1
2 is not 2-rationalizable. But, si =

1
2 is 2-rationalizable when n = 100; in fact, it is 49-rationalizable.

Contrast this with the level-k classification, where the anchor is taken either to be uniform or to assign

probability 1 to the arithmetic mean.12 When the anchor assigns probability 1 to the arithmetic mean y,

behavior above (the grid member closest to) p× y is categorized as “irrational” or “unsophisticated” and

behavior just below is categorized as reflecting exactly 1 level of reasoning. In the example, behavior above
1
2 is viewed as irrational (irrespective of the grid); in fact, when n = 100, behavior above .35 is viewed

as irrational. Notice, when the grid is fine, behavior viewed as irrational or reflecting exactly 1 level of

reasoning is, in fact, consistent with high levels of reasoning about rationality—even when the hierarchies

are generated by the same anchor. Section 9F discusses an additional reason that level-k classification may

underestimate the extent to which there is bounded reasoning, in the fine-grid beauty contest.

12These are different in practice. See Breitmoser (2012).
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8.2 Guessing Games

An important variant of the beauty contest is a guessing game, first studied in Costa-Gomes and Crawford

(2006). These games differs from the beauty contest in that their payoff functions are now

πi(sj : j ∈ I) = B −

si − p

|I| − 1

∑
j∈I\{i}

sj

2

,

where B ≥ 0 and p ∈ (0, 1).13 So, each player i seeks to minimize the distance to their expectation of the

target.

There are two strategic differences from the beauty contest. First, the target only depends on the

average behavior of the other players and is not impacted by a player’s own choice. Second, now, player i

has a direct incentive to match the target; because the target depends on p, player i may have an incentive

to choose a strategy that is significantly lower than their expectation of the average strategy. (See Lemma

C.4.) By contrast, in the beauty contest, player i only has an incentive to be the player closest to the target;

this is an indirect incentive to match the target, which can, in principle, be met with higher strategies.

To see the implication of these new incentives, suppose |I| = 3, the set of strategies is {0, 1, 2, 3, 4, 5},
and p = 2

3 . Consider an anchor µ, where each µi is uniform. Now, L1
i = {2} and, for each m ≥ 2,

Lm
i = {1}. (Notice, L3

i = {1} precisely because a player’s own action doesn’t impact the target.) Yet, even

if players’ hierarchies of beliefs are generated by the uniform anchor, observing si ∈ {0, 2, 3} is consistent

with a higher bound on reasoning about rationality. To see this, note that, for each m ≥ 1,

Sm
i =


{0, 1, 2, 3} if m = 1

{0, 1, 2} if m = 2

{0, 1} if m ≥ 3.

So, even if players beliefs are generated by the anchor, an observation of si = 2 is consistent with R1BR

and an observation of si = 0 is consistent with RmBR for all m ≥ 1.

The m-rationalizable strategies are given by

Sm
i = {x, . . . , x+ J(m)∆},

where J : 0, 1, 2, . . .→ {0, . . . , κ} is a weakly decreasing function satisfying the following criteria:

(i) J(0) = κ;

(ii) J(m+ 1) < J(m) if J(m) ≥ 1 and x+ J(m)∆ > x̃(∆, p) := ∆
2(1−p) ; and

(iii) J(m+ 1) = J(m) otherwise.

As the example indicated, J(m+1) can be strictly less than J(m)− 1, i.e., on any given round more than

one strategy can be eliminated. (In the specific case where x + κ∆ ∈ (x̃(∆, p), 3x̃(∆, p)], rationalizability

begins by eliminating the highest strategy on each round, until some round m where the m-rationalizable

strategies stop shrinking. See Appendix C.)

13There are variants based on the distance between si and p/(|I|−1)
∑

j∈I\{i} sj , as measured by the absolute value. A

similar discussion applies to those variants.
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In experiments, the grid size is small relative to p. In that case, rationalizability involves eliminating

more than simply the highest strategy. But, the anchor is typically taken to be uniform or to assign

probability 1 to the arithmetic mean. For these anchors, the highest 1-rationalizable strategy is typically

higher than the highest level 1 strategy, despite the fine grid. Lemma C.4 points to why. For instance, take

[x, x] = [0, 1] with a grid given by (∆n, κn) = ( 1n , n); again, a fine grid corresponds to n ≥ 1 large. When

the anchor is uniform, a player’s best response is to choose the strategy (in the grid) closest to p
2 . But,

when the grid is fine, there are 1-rationalizable strategies in (p2 , p); in fact, when p > 1
2 and the grid is fine,

there are 2-rationalizable strategies in (p2 , p
2), etc. So, even when hierarchies are generated by the uniform

anchor, behavior classified as level 0, level 1, etc., may be consistent with higher rounds of reasoning about

rationality.

8.3 11-20 Game

This game was initially studied in Arad and Rubinstein (2012). Two players simultaneously choose a

number in {11, 12, . . . , 20}. In the original version of the game (Arad and Rubinstein, 2012), payoff functions

are given by

πi(si, s−i) =

si + 20 if s−i = si + 1

si otherwise.

Alaoui and Penta (2016) propose a version where the payoff functions are given by

πi(si, s−i) =


si + 20 if s−i = si + 1

si + 10 if s−i = si

si otherwise.

Notice, in both versions, each strategy si ∈ {11, 12, . . . , 19} is a best response to s−i = si+1. In the original

version (Arad and Rubinstein, 2012), si = 20 is a best response to s−i = 11; in the revised version (Alaoui

and Penta, 2016), si = 11 is a best response to s−i = 11. Note that these differences are a deliberate

feature of the design, both in Arad and Rubinstein and in Alaoui and Penta.

The two games are different from the perspective of the level-k concept. To see this, consider an anchor

with each µi(20) = 1. (See point (i) on page 3563 of Arad and Rubinstein on why this is a natural anchor.)

In both games, for each m = 1, . . . , 9, Lm
i = {20−m}. In the original version of the game L10

i = {20} and

the levels cycle. As a consequence, the initial version of the game, a strategy classified as level m ≥ 1 if

and only if it is classified as level ℓ +m for ℓ ∈ {10, 20, 30, . . .}. But, in the revised version of the game,

Lm
i = {11} for each m ≥ 10.

The two games do not differ from the perspective of rationalizability. In particular, an important and

deliberate feature of the design is that the entire strategy set is rationalizable.14 (In Alaoui and Penta’s

version, 20 is a best response under a belief that assigns 19
20 : 1

20 to 11 : 20.) As a consequence, even in

players’ hierarchies are generated by an anchor that assigns probability 1 to 20, every strategy is consistent

with RmBR for all m ≥ 1.

For the original version of the game, the classification from the level-k model cannot overestimate a

bound on reasoning: Any strategy is consistent with unbounded levels of reasoning according to the level k

14See point (vi) on page 3563 in Arad and Rubinstein on why this is desirable.
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model. (For this reason, Arad and Rubinstein are careful to only draw conclusions about a bound when the

subjects’ own explanations allowed them to do so.) The conclusion is different for the revised version of the

game. When the anchor assigns probability 1 to 20, the level-k model suggests the strategy 20 −m ≥ 12

has a bound of at most m. Nevertheless, all strategies are consistent with unbounded reasoning about

rationality, even when the hierarchies are generated by the anchor.

9 Discussion

A. Complete Level-k Type Structures and Hierarchies Consistent with the Anchor One

might conjecture that a complete level-k type structure for µ induces all hierarchies of beliefs consistent

with the anchor. However, this is not the case. We begin with an example.

Example 9.1. Consider a two-player game where each Si = {2i,3i}. For each player i, there is a

hierarchy of beliefs hi,2 = (h1i,2, h
2
i,2, . . .) where it is commonly believed that the other player chooses 2−i:

So, h1i,2(2−i) = 1 and hm+1
i,2 (2−i, . . . , h

m
−i,2) = 1. Also, for each player i, there is a hierarchy of beliefs

hi = (h1i , h
2
i , . . .) with h1i (2−i) = 2

3 , h
m+1
i (2−i, . . . , h

m
−i,2) = 2

3 , and hm+1
i (3−i, . . . , h

m
−i,2) = 1

3 . (So, h2i
assigns probability 2

3 to “the other player plays 2−i and believes I play 2i” and probability 1
3 to “the other

player plays 3−i and believes I play 2i.”)

Now consider an anchor µ = (µ1, µ2) where, for each i, µi(2−i) =
2
3 . Note, that hi is a hierarchy of

beliefs consistent with the anchor, since h1i = p1i,µ. However, there is no level-k type structure (including

a complete level-k type structure) that induces the hierarchy hi = (h1i , h
2
i , . . .). We give the intuition why

here and complete the proof in Appendix D.

Fix a level-k type structure for µ = (µi : i ∈ I) and, for each i ∈ I, let Ci = {Tm
i : m = 1, 2, . . .}

be a Borel cover so that (Ci : i ∈ I) jointly satisfy conditions (i)-(ii) of Definition 5.1. Suppose, contra

hypothesis, there exists some type ti ∈ Ti with δi(ti) = hi. Then, there must exist some type t−i,2 ∈ T−i

with δ−i(t−i,2) = h−i,2. (See Lemma D.1.) But, there is no such type t−i,2 ∈ T−i. (See Lemma D.2.)

Intuitively: The 1-types have first-order beliefs distinct from h1i,2. Since the 2-types must assign probability

1 to 1-types, this implies that the 2-types have second-order beliefs distinct from h1i,2. And so on.

The example points to a more general phenomena. A level-k type structure (a fortiori, a complete

level-k type structures) cannot induce hierarchies of beliefs where the first-order beliefs coincide with

the anchor and higher-order beliefs assigns positive probability to beliefs that are inconsistent with the

anchor. As a consequence, it also cannot induce hierarchies of beliefs that assign positive probability to

such hierarchies. Etc. Put differently, level-k type structures (a fortiori, complete level-k type structures)

impose the substantive requirement: Not only are players beliefs consistent with the anchor, they believe

other players’ beliefs are consistent with the anchor, etc.15 As a consequence:

Proposition 9.1. Fix a non-degenerate anchor µ, i.e., an anchor where no player assigns probability 1

to a strategy profile. If T is a level-k type structure for µ, then T does not induce all hierarchies of beliefs

consistent with µ.

One might instead hope for the following: If a hierarchy can be induced by a level-k type structure for

µ, then any complete level-k type structure must also induce that hierarchy. However, a close inspection

15Of course, one might want to impose this substantive requirement. The literature is, arguably, silent on whether this is
desired.
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of Definition 5.2 indicates why this need not be the case. While a complete level-k type structure requires

a rich set of 2-types, 3-types, etc., it does not require a rich set of 1-types.

The proof of Proposition 5.3 constructs a particular complete level-k type structure T ∗ = (T ∗
i , β

∗
i : i ∈ I)

that does have a rich set of 1-types: For every belief νi ∈ ∆(S−i × T ∗
−i) with marg S−i

νi = µi, there is a

1-type in T ∗
i with β∗

i (t
∗
i ) = νi. For this reason, any hierarchy of beliefs that can be induced by a countable

level-k type structure can be induced by the constructed complete level-k type structure. Appendix A.4

discusses the technical difficulty in extending the result to any level-k type structure.

B. Complete Level-k Type Structures and Inference We saw that a complete level-k type struc-

ture need not induce all hierarchies of beliefs consistent with the anchor. Despite this, from the perspective

of inferring the level of reasoning about rationality, it suffices to focus on level-k and complete level-k

type structures. To understand why, recall that in any type structure, the set of strategies consistent

with R(m − 1)BR must be contained in the m-rationalizable strategies. (Refer to Proposition 6.1(i).)

The same holds if we replace “any type structure” with “any hierarchy structure” (i.e., any belief-closed

subset—or even any subset—of hierarchies of beliefs). Since any m-rationalizable strategy is consistent

with R(m − 1)BR strategy in a complete level-k type structure (Theorem 6.1(ii)), the focus on complete

level-k type structures is without loss of inference.

C. Definition of Level-k Type Structures A level-k type structure (Definition 5.1) requires that,

for each player i, we find a cover that satisfies two properties. It does not require that the associated covers

be unique. Indeed, they may not be; see Example D.2. It also does not require that the cover is a partition.

Indeed, they may not be; see Example D.1.

A complete level-k type structure (Definition 5.2) is associated with covers that satisfy three criteria.

While these covers need not be a partition, the construction of a complete level-k type structure in Propo-

sition 5.3 does involve partitional covers. We do not know if adding a partitional requirement imposes

substantive assumptions.

D. Definition of the Level-k Solution Concept Definition 7.1 allows for the fact that there may

be multiple best responses to a given distribution on strategies. This is not simply a theoretical possibility

but a feature of important level-k analyses. As pointed out in Remark 7.1, some papers instead assume

that players have a uniform belief about best responses. This imposes a secondary exogenous restriction on

beliefs—one that depends on iterative best responses. This additional restriction only serves to reinforce

the message of the paper: It gives a level-k bound that is lower than that suggested by Definition 7.1. As

such, this choice may suggest lower levels of reasoning about rationality than is consistent with the data.

Theorem 7.1 can be seen as providing foundations for this level-k solution concept, as specified by

Definition 7.1. From the perspective of foundations, it is important that we focus on this generalized

level-k solution concept. The epistemic approach takes, as given, the set of hierarchies of beliefs players

consider possible (i.e., a type structure); it then goes on to impose epistemic conditions relative to those

hierarchies (i.e., RmBR is applied relative to a type structure). The restriction to a uniform belief over

best responses proceeds in the opposite direction: It derives first-order beliefs based on best responses (to

other beliefs).
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E. Foundations for Level-k Theorem 7.1 provides epistemic foundations for the level-k solution

concept. These foundations are quite different from foundations for other solution concepts: The typical

approach (in epistemic game theory) will simply say whether a hierarchy of beliefs is or is not consistent

with a particular epistemic assumption. By contrast, the foundations here rest on associating different

hierarchies of partial beliefs with different epistemic conditions. In doing so, it allows the researcher to

make different epistemic assumptions (i.e., R1BR, R2BR, etc. . .) based on different hierarchies of partial

beliefs. It is this property that leads leads to the difficulty with identification discussed in Section 7.3.

The foundations are cast in a typical epistemic framework, where types are associated with hierarchies

of beliefs. This approach describes players as actors that do not face limitations on their ability to engage

in interactive reasoning—i.e., their ability to specify all sentences of the form “I think that you think that

I think . . ..” Often, the level-k solution concept is motivated by a stipulation that players have a limited

ability to engage in such sentences. Theorem 7.1 indicates that this stipulation is not needed—that the

level-k solution concept does not require limits on the ability to engage in interactive reasoning.

Our framework is expressive beyond what might appear to be needed for certain results. But there is

no sense that the additional expressiveness interferes with the conclusion of the results. The key is that the

epistemic conditions of RmBR depend only on the (m+ 1)th-order beliefs.16 Importantly, this conclusion

remains true even if the epistemic model contains types that consider the possibility that other players “do

not reason” (as in Heifetz and Kets, 2013 or Kets, 2010). See Appendix D for a formal statement.

F. Fine Grid: Beauty Contest Return to the beauty contest. One might have thought that a fine

grid uses a special structure that brings the sets of level-k and rationalizable strategies into close (or even

exact) agreement. If this were to happen, it would weaken the import of our results. But this is not the

case. Section 8.1 already pointed to the fact that a fine grid can exacerbate the extent to which the level-k

classification underestimates reasoning. Here we see a second issue: In any fine-grid beauty contest game,

there may multiple rationalizable strategies. So, even when hierarchies are generated by a given anchor,

there may be multiple strategies that are consistent with unbounded reasoning about rationality.

Example 9.2. Suppose |I| = 10 and p = .9. Choose the strategy set so that [x, x] = [0, 1] with a grid

given by (∆n, κn) = ( 1n , n). Then, the m-rationalizable strategies will be a strict subset of the (m − 1)-

rationalizable strategies if and only if κn −m ≥ 4. When ∆n is small, κn is large. Thus, we can find an m

so that 4 > κn −m ≥ 1. In that case, the set of rationalizable strategy profiles is not a singleton.

In the limiting case, where each Si = [x, x], the set [x, x) is contained in the rationalizable strategy set for

i. (This is irrespective of I and p.) See Appendix D.4.

To understand why this occurs, consider a sequence ((κn,∆n) : n ≥ 1) so that, for each n ≥ 1,

x + κn∆n = x and limn→∞ ∆n = 0. Then, for each ε > 0, there exists N(ε) ≥ 1 so that ∆n < ε

for all n ≥ N(ε). A ε-fine grid represents a grid with (κ,∆) = (κn,∆n) for some n ≥ N(ε). In the

beauty contest, for any m ≥ 1, there is a ε-fine grid so that the set of m-rationalizable strategies is strictly

contained in the set of (m−1)-rationalizable strategies. (See Appendix D.4.) But this stops short of saying

that there is a ε̂ > 0 so that, for any ε > ε̂, there is a unique rationalizable strategy for a game with a

ε-fine grid. In fact, that may not be the case, as indicated by the example.

16This can be seen by recasting standard results in hierarchy spaces.
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10. Conclusion

This paper takes seriously the idea that players’ hierarchies of beliefs are shaped by an anchor, the key

assumption associated with level-k models. Toward that end, it focuses on type structures that capture

the substantive assumptions that hierarchies are induced by an anchor. In a sense, complete level-k type

structures don’t impose (needless) auxiliary assumptions on beliefs, above and beyond the requirement that

hierarchies are induced by an anchor. So, by analyzing RmBR in a complete level-k type structure, we

capture the reasoning (or “cognitive”) process typically associated with the the level-k model. Nonetheless,

Theorem 6.1 shows that this reasoning process has less predictive power than the level-k solution concept;

it has the same predictive power as rationalizability.

Theorem 7.1 points to a reasoning process that has the predictive power of the level-k solution concept.

But, the same result points to a new identification assumption—one that challenges the ability to infer

a “level of reasoning” from the fact that behavior is classified as some level m. Do there exist alternate

assumptions about beliefs—assumptions that are testable—which would allow the researcher to infer a

subject’s “level of reasoning” from the fact that behavior is classified as level m? Note, such assumptions

would go above and beyond that discussed in the level-k literature. As such, this is a question for future

research.

Appendix A Proofs for Sections 4-5

A.1 Type Structures Induce Hierarchies of Beliefs

Fix a type structure T = (S−i, Ti, βi : i ∈ I). We will inductively define measurable maps ρmi : S−i×T−i →
Xm

i and δmi : Ti → Hm
i . First, set ρ1i = proj S−i

and δ1i = ρ1
i
◦ βi. Note, ρ1i is measurable and so ρ1

i
is

measurable. From this and the fact that βi is measurable, δ1i is measurable.

Now, assume the measurable maps ρmi : S−i × T−i → Xm
i and δmi : Ti → Hm

i have been defined. Set

ρm+1
i (s−i, t−i) = (ρmi (s−i, t−i), δ

m
−i(t−i)).

Note, since ρmi and δm−i are measurable, so is ρm+1
i . Then set δm+1

i = ρm+1
i

◦ βi. Since ρm+1
i is measurable

and so ρm+1
i

is measurable. From this and the fact that βi is measurable, δm+1
i is measurable.

The following standard lemmata will be of use.

Lemma A.1. For each ti ∈ Ti, δ
1
i (ti) = marg S−i

βi(ti).

Proof. Fix some s−i ∈ S−i. Note,

δ1i (ti)(s−i) = βi(ti)((ρ
1
i )

−1({s−i})) = βi(ti)(S−i × T−i),

as desired.

Lemma A.2. For each m ≥ 1, δmi (ti) = margXm
i
δm+1
i (ti).

Proof. Fix some Borel Em
i ⊆ Xm

i . Note that

δmi (ti)(E
m
i ) = βi(ti)((ρ

m
i )−1(Em

i )) = βi(ti)((ρ
m+1
i )−1(Em

i ×Hm
−i)) = δm+1

i (ti)(E
m
i ×Hm

−i),
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as required.

Lemma A.3. For each m ≥ 1, ρm+1
i (s−i, t−i) = (s−i, δ

1
−i(t−i), . . . , δ

m
−i(t−i)).

Proof. For m = 1, this is immediate. Assume the statement is true for m ≥ 2, so that ρm+1
i (s−i, t−i) =

(s−i, δ
1
−i(t−i), . . . , δ

m
−i(t−i)). Then, ρ

m+2
i (s−i, t−i) = (s−i, δ

1
−i(t−i), . . . , δ

m
−i(t−i), δ

m+1
−i (t−i)), as desired.

A.2 Proof of Proposition 5.1

Fix a level-k type structure for µ = (µi : i ∈ I) and, for each i ∈ I, let Ci = {Tm
i : m = 1, 2, . . .} be a

Borel cover so that (Ci : i ∈ I) jointly satisfy conditions (i)-(ii) of Definition 5.1. The following Lemma will

establish Proposition 5.1.

Lemma A.4. For each m ≥ 1, ηmi (δmi (Tm
i )) ⊆ {pmi,µ}.

Proof. The case of m = 1 is immediate. Assume the claim holds for m ≥ 2. Fix some ti ∈ Tm+1
i and

write hm+1
i = δm+1

i (ti). We will show that ηm+1
i (hm+1

i ) = pm+1
i,µ .

To see this, fix

Fm
−i = {pm−i,µ} ⊆ Pm

−i = Y m+1
i

and observe that Fm
−i is measurable. Note, ηm+1

i (hm+1
i ) = pm+1

i,µ if and only if ηm+1
i (hm+1

i )(Fm
−i) = 1.

Observe

ηm+1
i (hm+1

i )(Fm
−i) = hm+1

i ((η̂m+1
i )−1(Fm

−i))

= hm+1
i

(
{(xm−i, h

m
−i) ∈ Xm+1

i : ηmi (hm−i) = pm−i,µ}
)
.

Thus,

ηm+1
i (hm+1

i )(Fm
−i) = hm+1

i (Em+1
i ),

where

Em+1
i = Xm

i ×
∏
j ̸=i

(ηmj )−1({pmj,µ}) ⊆ Xm+1
i .

As such, it suffices to show that hm+1
i (Em+1

i ) = 1.

To show this, first observe that

S−i × Tm
−i ⊆ (ρm+1

i )−1(Em+1
i ).

To see this, fix (s−i, t−i) = (sj , tj : j ̸= i) ∈ S−i × Tm
−i. By the induction hypothesis, ηmj (δmj (tj)) = pmj,µ.

Thus, ρm+1
i (s−i, t−i) ∈ Em+1

i , as stated.

Now note that

hm+1
i (Em+1

i ) = βi(ti)((ρ
m+1
i )−1(Em+1

i )) ≥ βi(ti)(S−i × Tm
−i) = 1,

where the inequality follows from the fact that S−i × Tm
−i ⊆ (ρm+1

i )−1(Em+1
i ) and the last equality follows

from the fact that ti ∈ Tm+1
i . From this, hm+1

i (Em+1
i ) = 1 as desired.
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A.3 Proof of Proposition 5.2

Fix a level-k type structure for µ, viz. T = (S−i, Ti, βi : i ∈ I). For each i ∈ I, write Ci = {T 1
i , T

2
i , . . .}

for Borel covers of Ti that jointly satisfy conditions conditions (i)-(ii) of Definition 5.1. We will show that

T is not hierarchy-complete. To do so, we construct an alternate type structure and show that it induces

hierarchies of beliefs that are not induced by T .

Consider an alternate type structure T ∗ = (S−i, T
∗
i , β

∗
i : i ∈ I) so that, for each i, T ∗

i = {t∗i } and

marg S−i
β∗
i (t

∗
i ) = pi where pi ∈ ∆(S−i) so that pi ̸= µi. Write δ∗,mi : T ∗

i → Hm
i for the mapping from the

type t∗i to the mth-order belief and, similarly, write δ∗i : T ∗
i → H∞

i for the mapping from the type t∗i to

the associated hierarchy of beliefs. Observe that, for each s−i ∈ S−i, δ
∗,1
i (t∗i )(s−i) = pi(s−i). Moreover,

for each m ≥ 2, each s−i ∈ S−i, and each Borel Em−1
−i ⊆

∏m−1
n=1 H

n
−i,

δ∗,mi (t∗i )({s−i} × Em−1
−i ) =

pi(s−i) if (δ∗,1−i (t
∗
−i), . . . , δ

∗,m−1
−i (t∗−i)) ∈ Em−1

−i

0 otherwise.

Write

Hi(t
∗
i ) = {ti ∈ Ti : δi(ti) = δ∗i (t

∗
i )}.

for the set of types ti ∈ Ti that induce the same hierarchies of beliefs as t∗i . Similarly, write

Hm
i (t∗i ) = {ti ∈ Ti : δ

m
i (ti) = δ∗,mi (t∗i )}

for the set of types ti ∈ Ti that induce the same mth-order beliefs as t∗i . Of course,

Hi(t
∗
i ) =

⋂
m≥1

Hm
i (t∗i ).

Suppose, contra hypothesis, that T = (S−i, Ti, βi : i ∈ I) is hierarchy-complete. Then, for each i,

Hi(t
∗
i ) ̸= ∅. Because T is a level-k type structure, there exists a map Ni : Hi(t

∗
i ) → N+ so that (i) for

each ti ∈ Hi(t
∗
i ), ti ∈ T

Ni(ti)
i , but (ii) if Ni(ti) > m ≥ 1, then ti ̸∈ Tm

i . Observe that Ni(ti) ≥ 2, since

ti ∈ Hi(t
∗
i ) implies δ1i (ti) = pi ̸= µi. (See Lemma A.1.) Choose a profile of types (ti : i ∈ I) ∈

∏
i∈I Hi(t

∗
i )

so that, for each player i, there is no ui ∈ Hi(t
∗
i ) with Ni(ui) < Ni(ti). Without loss, suppose i = 1 is a

player with N := N1(t1) ≤ Ni(ti) for all i ∈ I. Thus,

TN−1
−1 ∩

⋂
m≥1

Hm
−1(t

∗
−1) = TN−1

−1 ∩H−1(t
∗
−1) = ∅.

We will use this fact to show that δ1(t1) ̸= δ∗1(t
∗
1), contradicting that t1 ∈ H1(t

∗
1).

Suppose, contra hypothesis that, for each m, δm1 (t1) = δ∗,m1 (t∗1). Let

Fm−1
−1 = {(δ∗,1−1(t

∗
−1), . . . , δ

∗,m−1
−1 (t∗−1))}

and observe that the set is Borel. (Note, Fm−1
−1 is the set of n = 1, . . . , (m − 1)th-order beliefs of players

i ∈ I\{1} that is induced by T ∗.) It follows that, for each m ≥ 2,

δm1 (t1)({s−1} × Fm−1
−1 ) = p1(s−1).
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By construction of the maps δm1 and the fact that, for each m ≥ 2, δm1 (t1) = δ∗,m1 (t∗1), it follows that

β1(t1)({s−1} ×Hm−1
−1 (t∗−1)) = p1(s1)

for each m ≥ 2. But, by construction, β1(t1)({s−1} × TN−1
−1 ) = p(s−1). So, for each m ≥ 2,

β1(t1)
(
{s−1} × (Hm−1

−1 (t∗−1) ∩ TN−1
−1 )

)
= p1(s−1).

Observe that, for each m ≥ 2, Hm
−1(t

∗
−1) ⊆ Hm−1

−1 (t∗−1). (See Lemma A.2.) Thus,

β1(t1)

{s−1} ×
⋂
m≥2

(Hm−1
−1 (t∗−1) ∩ TN−1

−1 )

 = lim
m→∞

β1(t1)
(
{s−1} × (Hm−1

−1 (t∗−1) ∩ TN−1
−1 )

)
= p1(s1).

However, ⋂
m≥2

(Hm−1
−1 (t∗−1) ∩ TN−1

−1 ) = ∅

and, so, for each s−1,

β1(t1)({s−1} ×
⋂
m≥2

(Hm−1
−1 (t∗−1) ∩ TN−1

−1 )) = 0.

Thus, for each s−1, p1(s−1) = 0, a contradiction.

A.4 Proof of Proposition 5.3

Construction of a Complete Level-k Type Structure For each integer m ≥ 1, let T ∗,m
i = [0, 1] ×

{m}. Set T ∗
i =

⋃
m≥1 T

∗,m
i . Endow T ∗,m

i with a metric d : T ∗
i × T ∗

i → R so that d((xj ,mj), (xℓ,mℓ)) =

∥xj − xℓ∥ if mj = mℓ and d((xj ,mj), (xℓ,mℓ)) = 2 if mj ̸= mℓ.

Lemma A.5. Then (T ∗
i , d) is a Polish space.

Proof. Let Dm = (Q∩ [0, 1])∩{m} and note that each Dm forms a countable dense subset of [0, 1]×{m}.
Then set D =

⋃
m∈Z(Dm × {m}). The set D is countable. It is also dense in T ∗

i . (This follows from the

fact that each open set in T ∗
i must either be an open set in [0, 1] × {m} or a union of such open sets.)

Thus, (T ∗
i , d) is separable.

Next observe that, for any Cauchy sequence ((xj ,mj) : j = 1, 2, . . .), there must be some J so that

mj = mJ for all j ≥ J . Thus, any Cauchy sequence converges and (T ∗
i , d) is complete.

Lemma A.6.

(i) There exists an injective bimeasurable map χ1
i : T ∗,1

i → ∆(S−i × T ∗
−i) so that χ1

i (T
∗,1
i ) = {νi ∈

∆(S−i × T ∗
−i) : marg S−i

νi = µi}.

(ii) For each m ≥ 2, there exists an injective bimeasurable map χm
i : T ∗,m

i → ∆(S−i × T ∗
−i) so that

χm
i (T ∗,m

i ) = {νi ∈ ∆(S−i × T ∗
−i) : νi(S−i × T ∗,m−1

−i ) = 1}.

Proof. For part (i), begin by noting that both T ∗,1
i = [0, 1] × {1} and ∆(S−i × T ∗

−i) are uncountable

Polish spaces. (The latter follows from Lemma A.5.) Since {νi ∈ ∆(S−i × T ∗
−i) : marg S−i

νi = µi} is a
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closed subset of ∆(S−i × T ∗
−i), it too is Polish. (See Aliprantis and Border, 2007, pg. 74.) Moreover,

{νi ∈ ∆(S−i × T ∗
−i) : marg S−i

νi = µi} is uncountable. So, the claim follows from the Borel Isomorphism

Theorem.

For part (ii), fixm ≥ 2. Note that both T ∗,m
i and ∆(S−i×Tm−1,∗

−i ) are uncountable Polish spaces. So, by

the Borel Isomorphism Theorem, there exists a bimeasurable bijective map χ̂m
i : T ∗,m

i → ∆(S−i×Tm−1,∗
−i ).

Also note that there exists an injective bimeasurable map ψ̂m
i : ∆(S−i × Tm−1,∗

−i ) → ∆(S−i × T ∗
−i) so that

ψ̂m
i (∆(S−i × Tm−1,∗

−i )) = {νi ∈ ∆(S−i × T ∗
−i) : νi(∆(S−i × T ∗,m−1

−i )) = 1}.

Thus, ψ̂m
i ◦ χ̂m

i is an injective bimeasurable map that satisfies the desired property.

For each i, let β∗
i : T ∗

i → ∆(S−i × T ∗
−i) be defined so that βi(x,m) = χm

i (x,m). Note, under this

construction, β∗
i is not injective. But, if there exists (x,m) ̸= (x′,m′) with β∗

i (x,m) = β∗
i (x

′,m′), then

either (i) (x,m) ∈ [0, 1]×{1} and (x′,m′) ̸∈ [0, 1]×{1} or (ii) (x′,m′) ∈ [0, 1]×{1} and (x,m) ̸∈ [0, 1]×{1}.

Lemma A.7. The map β∗
i is bimeasurable.

Proof. Fix a Borel E ⊆ S−i × T ∗
−i. Since each χm

i is measurable, each (χm
i )−i(E) is Borel. Now observe

that

(β∗
i )

−1(E) =
⋃
m≥1

(χm
i )−i(E)

is Borel. Thus, β∗
i is measurable.

Likewise, fix a Borel E ⊆ T ∗
i . Since each χm

i is bimeasurable, each χm
i (E ∩ T ∗,m

i ) is Borel. From this

β∗
i (E) =

⋃
m≥1

χm
i (E ∩ T ∗,m

i )

is Borel. Thus, β∗
i is bimeasurable.

Using Lemmata A.5-A.7, T ∗ = (T ∗
i , β

∗
i : i ∈ I) is a type structure with Polish type sets. Let ρ∗,mi :

S−i × T ∗
−i → Xm

i (resp., δ∗,mi : T ∗
i → Hm

i ) be the map from strategy-type pairs to the mth-order space of

uncertainty (resp. be the map from types to mth-order beliefs).

Lemma A.8. The type structure T ∗ = (T ∗
i , β

∗
i : i ∈ I) is a complete level-k type structure.

Proof. Observe that C∗
i = {T ∗,m

i : m = 1, 2, . . .} is a Borel cover that, by construction, satisfies conditions

(i)-(ii)-(iii) of a complete level-k type structure.

Remark A.1. Because T ∗ is a level-k type structure, it is not hierarchy-complete. It is also not type-

complete, i.e., the maps β∗
i are not onto. In particular, there is no type t∗i with marg S−i

β∗
i (t

∗
i ) ̸= µi and

Suppβ∗
i (t

∗
i ) = S−i × T ∗

−i.

Induces Hierarchies of Countable Level-k Type Structures For the remainder of the argument,

fix a level-k type structure (Ti, βi : i ∈ I). Then there exists a Borel covers Ci = {Tm
i : m = 1, 2, . . .},

for each i ∈ I, that jointly satisfy conditions (i)-(ii) of Definition 5.1. Let ρmi : S−i × T−i → Xm
i and

δmi : Ti → Hm
i be the maps associated with this type structure.

Lemma A.9. Suppose, for each i, Ti is countable. Then, for each m and each n, there is a map fm,n
i :

Tm
i → T ∗,m

i so that the following holds: For each ti ∈ Tm
i , δni (ti) = δ∗,ni (fm,n

i (ti)).
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Before coming to the proof of Lemma A.9, let us note that the Lemma delivers an fm,n
i : Tm

i → T ∗,m
i that

is Borel measurable and preserves nth-order beliefs. Measurability follows since Tm
i is countable. The fact

that fm,n
−i is measurable is important in showing the existence of the map fm+1,n+1

i .

Proof. The structure of the proof is as follows: We fix a type ti ∈ Tm
i and show that there exists a type

t∗i ∈ T ∗,m
i with δ∗,ni (t∗i ) = δni (ti). The map fm,n

i : Tm
i → T ∗,m

i can then be constructed by setting fm,n
i (ti)

to be the associated t∗i ∈ T ∗,m
i , i.e., with δ∗,ni (t∗i ) = δni (ti). The proof is by induction on n.

n = 1 : First considerm = 1 and let f1,1i : T 1
i → T ∗,1

i be an arbitrary map. Since ti ∈ T 1
i and f1,1i (ti) ∈ T ∗,1

i

are both 1-types in their respective type structures, it follows that

marg S−i
βi(ti) = µi = marg S−i

β∗
i (f

1,1
i (ti)).

By Lemma A.1, δ1i (ti) = marg S−i
βi(ti) and δ∗,1i (f1,1i (ti)) = marg S−i

β∗
i (f

1,1
i (ti)). From this, the claim

follows.

Next considerm ≥ 2. Fix some ti ∈ Tm
i . Note, there exists some νi ∈ ∆(S−i×T ∗

−i) so that marg S−i
νi =

marg S−i
βi(ti) and νi(S−i×T ∗,m−1

−i ) = 1. By construction, there exists some t∗i ∈ T ∗,m
i so that β∗

i (t
∗
i ) = νi.

Now notice that

δ1i (ti) = marg S−i
βi(ti) = marg S−i

νi = δ∗,1i (t∗i ).

(The first and last equality follows from Lemma A.1. The middle equality comes from the definition of νi.)

From this, the claim follows.

n ≥ 2 : Suppose the claim holds for n ≥ 1. We show that it also holds for n+ 1.

First consider m = 1. Note, by the induction hypothesis, for each player j, there exists a mapping

fnj : Tj → T ∗
j so that fnj (tj) = fm,n

j (tj) for some m with tj ∈ Tm
j . (Note, the choice of m does not

matter–we only require that tj ∈ Tm
j .) So the product map fn−i : T−i → T ∗

−i satisfies the following

property:

ρn+1
i (s−i, t−i) = ρ∗,n+1

i (s−i, f
n
−i(t−i)).

(This uses Lemmata A.2-A.3.) Thus, for each event En+1
−i ⊆ Xn

i ×Hn
−i,

(ρn+1
i )−1(En+1

−i ) = (id−i × fn−i)
−1((ρ∗,n+1

i )−1(En+1
−i )), (1)

where id−i : S−i → S−i is the identity map.

Fix some ti ∈ T 1
i . Let νi ∈ ∆(S−i × T ∗

−i) be the image measure of βi(ti) under (id−i × fn−i). By

construction, there exists a type t∗i ∈ T ∗,1
i with β∗

i (t
∗
i ) = νi. It remains to show that δ∗,n+1

i (t∗i ) = δn+1
i (ti).

Fix some event En+1
−i ⊆ Xn

i ×Hn
−i. Note,

δ∗,n+1
i (t∗i )(E

n+1
−i ) = νi

(
(ρ∗,n+1

i )−1(En+1
−i )

)
= βi(ti)

(
(id−i × fn−i)

−1
(
(ρ∗,n+1

i )−1(En+1
−i )

))
= βi(ti)

(
(ρn+1

i )−1(En+1
−i )

)
= δn+1

i (ti))(E
n+1
−i ),

34



where the third line uses Equation 1. This establishes δ∗,n+1
i (t∗i ) = δn+1

i (ti).

Next consider m ≥ 2. By the induction hypothesis and Lemmata A.2-A.3, for each t−i ∈ Tm−1
−i ,

ρn+1
i (s−i, t−i) = ρ∗,n+1

i (s−i, f
m−1,n
−i (t−i)).

Thus, for each event En+1
−i ⊆ Xn

i ×Hn
−i,

(ρn+1
i )−1(En+1

−i ) ∩ (S−i × Tm−1
−i ) = (id−i × fm−1,n

−i )−1((ρ∗,n+1
i )−1(En+1

−i ) ∩ (S−i × T ∗,m−1
−i )). (2)

Fix some ti ∈ Tm
i . Let νi ∈ ∆(S−i × T ∗

−i) satisfy the following: For each E∗
−i ⊆ S−i × T ∗,m−1

−i ,

νi(E
∗
−i) = βi(ti)((id−i × fm−1,n

−i )−1(E∗
−i))

and νi(S−i × (T ∗
−i\T

∗,m−1
−i )) = 0. Since βi(ti)(S−i × Tm−1

−i ) = 1, this is a well-defined measure in ∆(S−i ×
T−i) and, moreover, νi(S−i×T ∗,m−1

−i ) = 1. By construction, there exists a type t∗i ∈ T ∗,m
i with β∗

i (t
∗
i ) = νi.

It remains to show that δ∗,n+1
i (t∗i ) = δn+1

i (ti).

Fix some event En+1
−i ⊆ Xn

i ×Hn
−i. Note,

δ∗,n+1
i (t∗i )(E

n+1
−i ) = νi((ρ

∗,n+1
i )−1(En+1

−i ))

= νi

(
((ρ∗,n+1

i )−1(En+1
−i )) ∩ (S−i × T ∗,m−1

−i )
)

= βi(ti)
(
(id−i × fm−1,n

−i )−1
(
(ρ∗,n+1

i )−1(En+1
−i )) ∩ (S−i × T ∗,m−1

−i )
))

= βi(ti)
(
(ρn+1

i )−1(En+1
−i ) ∩ (S−i × Tm−1

−i )
)

= βi(ti)
(
(ρn+1

i )−1(En+1
−i )

)
= δn+1

i (ti)(E
n+1
−i ),

where the second line uses the fact that νi(S−i × T ∗,m−1
−i ) = 1, the third line follows from the construction

of νi, the fourth line follows from Equation 2, and the fifth line uses the fact that βi(ti)(S−i × Tm−1
−i ) = 1.

This establishes δ∗,n+1
i (t∗i ) = δn+1

i (ti).

Remark A.2. Proposition 5.3 establishes that there exists a complete level-k type structure (for µ) that

induces all hierarchies of beliefs that are induced by any countable level-k type structure (for µ). The

result can be extended to non-countable level-k type structures, provided they induce a countable number

of finite-order beliefs. (A proof is available upon request.) But, the result stops short of establishing the

following conjecture:

Conjecture: There exist a complete level-k type structure (for µ) that induces all hierarchies

of beliefs induced by some level-k type structure (for µ).

This remains an open question.

To understand the difficulty, note that Lemma A.9 delivers maps fm,n
i : Tm

i → T ∗,m
i that are Borel

measurable and preserve nth-order beliefs. The fact that each fm,n
i is Borel measurable is important. For

instance, the fact that each fm,1
−i is Borel measurable is used to show that, for each ti ∈ Tm

i , there is some

t∗i ∈ T ∗,m
i that with δ2i (ti) = δ∗,2i (t∗i ).

Here, the fact that each fm,n
i is measurable follows from the fact that Ti is countable. We do not know
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if the result can be extended to any level-k type structure or even any level-k type structure with Polish

type sets Ti. We now explain the tradeoff.

Define a multifunction Fm,n
i : Tm

i ↠ T ∗,m
i , where

Fm,n
i (ti) = (δ∗,ni )−1({δni (ti)})

for each ti ∈ Tm
i . Suppose this multifunction is non-empty. It suffices to show that there is a Borel

measurable selection of Fm,n
i or, equivalently, that there is a Borel uniformization or a Borel section of

graph(Fm,n
i ).

Standard measurable selection theorems and uniformization theorems cannot be applied here, since the

maps β∗
i (and so δ∗,ni ) are not continuous. There are other constructions of the canonical structure, which

would lead to β∗
i to be continuous. However, they raise other issues for selection/uniformization. The

central issues is that, under those constructions, the sets T ∗,m
i are not compact. (More details are available

upon request.) We do not know if there is a construction or alternate proof that circumvents these issues.

Appendix B Proofs for Sections 6-7

B.1 Proofs for Section 6

Lemma B.1. Let Ji : Si ↠ ∆(S−i) be a correspondence with

Ji(si) = {νi ∈ ∆(S−i) : si ∈ BRi[νi]}.

Then Ji(si) is closed-valued. Moreover, if si ∈ S1
i , then Ji(si) is non-empty valued.

Proof. Let π̂i : Si ×∆(S−i) → R be defined by

π̂i(si, νi) =
∑
S−i

πi(si, s−i)νi(s−i).

It follows from Theorem 15.3 in Aliprantis and Border (2007) and the fact that Si is finite that π̂i is

continuous. Moreover, since Si × ∆(S−i) is compact, π̂i is bounded. As a consequence, the function

π̃i : Si × Si ×∆(S−i) → R defined by

π̃i(si, ri, νi) = π̂i(si, νi)− π̂i(ri, νi)

is continuous and bounded.

Now, fix a sequence (ν1i , ν
2
i , . . .) with each νki ∈ Ji(si). Then, for each ν

k
i and each ri ∈ Si, π̃i(si, ri, ν

k
i ) ≥

0. If (ν1i , ν
2
i , . . .) converges to νi then, for each ri ∈ Si, π̃i(si, ri, νi) ≥ 0. (See Theorem 15.3 in Aliprantis

and Border, 2007, which uses the fact that π̃i is continuous and bounded.) Thus, νi ∈ Ji(si) and Ji(si) is

closed.

Lemma B.2.

(i) If E−i is Borel then Bi(E−i) is Borel.

(ii) If E−i = ∅, then Bi(E−i) = ∅ and so Borel.
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Proof. Part (i) follows from Lemma 15.16 in Aliprantis and Border (2007) and the fact that βi is measur-

able. Part (ii) is immediate.

Lemma B.3. For each m, the sets Rm
i are Borel.

Proof. The proof is by induction on m.

m = 1: Fix a strategy si and let

O(si) = {νi ∈ ∆(S−i × T−i) : si ∈ BRi[marg S−i
νi]}.

It suffices to show that each O(si) is closed. If so, each {si}×β−1
i (O(si)) is Borel. (This uses the fact that

βi is measurable.) As a consequence,

R1
i =

⋃
si∈Si

(
{si} × β−1

i (O(si))
)

is the finite union of Borel sets and so Borel.

Observe that

O(si) = {νi ∈ ∆(S−i × T−i) : marg S−i
νi = µi} = (proj

S−i
)−1(Ji(si)).

Since proj S−i
is continuous, so is proj

S−i
: ∆(S−i × T−i) → ∆(S−i). So, by Lemma B.1, O(si) is closed.

m ≥ 2: Assume that, for each i, Rm
i is Borel. As such, each Rm

−i is also Borel. So by Lemma B.2(i), Rm
i

is Borel.

B.2 Proof of Theorem 7.1

In what follows, we fix an anchor µ and the sets Lm
i are defined relative to this anchor.

Proposition B.1. Fix an epistemic game (G, T ) where T is a level-k type structure for µ. Then:

(i) proj Si

(
R1

i ∩ (Si × T 1
i )
)
= L1

i , and

(ii) for each m ≥ 1, proj Si
(Rm

i ∩ (Si × Tm
i )) ⊆ Lm

i .

Proof. Begin with part (i). Fix some si ∈ proj Si

(
R1

i ∩ (Si × T 1
i )
)
. Then there exists some ti ∈ T 1

i so

that (si, ti) ∈ R1
i . As such, si ∈ BRi[marg S−i

βi(ti)] and marg S−i
βi(ti) = µi. So si ∈ L1

i . Conversely, fix

si ∈ L1
i . Then si ∈ BRi[µi] and, for each ti ∈ T 1

i , marg S−i
βi(ti) = µi. Thus, {si} × T 1

i ⊆ R1
i ∩ (Si × T 1

i ).

As such, L1
i ⊆ proj Si

(
R1

i ∩ (Si × T 1
i )
)
.

The proof of part (ii) is by induction on m. The case of m = 1 follows from part (i). Assume the

claim holds for m. Fix some si ∈ proj Si

(
Rm+1

i ∩ (Si × Tm+1
i )

)
. Then there exists some ti ∈ Tm+1

i so that

(si, ti) ∈ Rm+1
i . As such, si ∈ BRi[marg S−i

βi(ti)]. Moreover, βi(ti)(R
m
−i ∩ (S−i × Tm

−i)) = 1. So, by the

induction hypothesis, marg S−i
βi(ti)(L

m
−i) = 1. As such, si ∈ Lm+1

i .
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Proof of Theorem 7.1. Part (i) is Proposition B.1. So we focus on part (ii). Throughout, fix a

complete level-k type structure for µ with covers Ci = {Tm
i : m = 1, 2, . . .} satisfying conditions (i)-(ii)-(iii)

of Definition 5.2. The proof is by induction on m.

The case of m = 1 is part (i) of Proposition B.1. So, assume the result holds for m. By part (ii) of

Proposition B.1, it suffices to show that

Lm+1
i ⊆ proj Si

(
Rm+1

i ∩ (Si × Tm+1
i )

)
.

Fix si ∈ Lm+1
i . Then there exists some νi ∈ ∆(S−i) such that si ∈ BRi[νi], and νi(L

m
−i) = 1. We will use

νi to construct a ν̂i ∈ ∆(S−i × T−i) so that: (i) marg S−i
ν̂i = νi, (ii) ν̂i(S−i × Tm

−i) = 1, and (iii) for each

n ≤ m, ν̂i(R
n
−i) = 1. We then show that this suffices to deliver the result.

Step 1: By the induction hypothesis, for each player j, there exists a mapping τmj : Lm
j → Tm

j that satisfies

the following property: For each sj ∈ Lm
j , (sj , τ

m
j (sj)) ∈ Rm

j ∩ (Sj × Tm
j ). Let τm−i : L

m
−i → Tm

−i be the

associated product map. For each s−i ∈ Lm
−i, set ν̂(s−i, τ

m
−i(s−i)) = ν(s−i) and, for each (s−i, t−i) ∈

S−i × T−i\(gr(τm−i)), set ν̂(s−i, t−i) = 0. This gives a ν̂i ∈ ∆(S−i × T−i). By the construction and the fact

that Tm
−i is Borel, we have ν̂i(S−i × Tm

−i) = 1. By the construction and the fact that each Rn
−i is Borel

(Lemma B.3), we have that, for each n ≤ m, ν̂i(R
n
−i) = 1.

Step 2: Since the type structure is a complete level-k type structure for µ, there exists a type ti ∈ Tm+1
−i

with βi(ti) = ν̂i. Since marg S−i
βi(ti) = νi and si ∈ BRi[νi], it follows that (si, ti) ∈ R1

i . Since, for each

n ≤ m, βi(ti)(R
n
−i) = 1, (si, ti) ∈ Rm+1

i .

B.3 Result for Section 7.3

Lemma B.4. Fix an anchor µ. For each m ≥ 1 and each n ≥ m, Ln
i ⊆ Sm

i .

Proof. The proof is by induction on m. For m = 1 and each n ≥ 1, it is immediate that Ln
i ⊆ S1

i . Suppose

the result holds for m ≥ 1. Fix n ≥ m and note that si ∈ Ln+1
i if and only if si is a best response under

some νi ∈ ∆(S−i) with νi(L
n
−i) = 1. By the induction hypothesis, Ln

−i ⊆ Sm
−i and so νi(S

m
−i) = 1. Thus,

si ∈ Sm+1
−i .

Appendix C Proofs for Section 8

In the main text, we stated the following: There exists a weakly decreasing function J : {0, 1, 2, . . .} →
{0, . . . , κ} so that, for each i and each m ≥ 0,

Sm
i = {x, . . . , x+ J(m)∆}.

Moreover, the function J satisfies the following criterion: (i) J(0) = κ; (ii) J(m+ 1) < J(m) if J(m) ≥ 1

and x + J(m)∆ > ∆
2(1−p) ; and (iii) J(m + 1) = J(m) otherwise. This appendix is devoted to prove this

characterization.
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C.1 Key Results

To prove the claim, it will be useful to introduce standard terminology: Fix some non-empty set X−i ⊆ S−i.

Say si is dominated given X−i if there exists a σi ∈ ∆(S−i) so that πi(σi, s−i) > πi(si, s−i), for each

s−i ∈ X−i. Say si is justifiable given X−i if there exists a νi with si ∈ BRi[νi] and νi(X−i) = 1. A

standard result is that si is justifiable given X−i if and only if it is not dominated given X−i.

The claim follows from the following three lemmata:

Lemma C.1. Let s∗ = (s∗1, . . . , s
∗
|I|) be such that s∗1 = · · · = s∗|I| Then, (s

∗
1, . . . , s

∗
|I|) is a Nash equilibrium

if and only if either s∗i = x or s∗i = x+ k∆ ≤ ∆
2(1−p) .

Lemma C.2. Fix some x + k∆ > min{x, ∆
2(1−p)}. Then, x + k∆ is dominated given {x, x + ∆, . . . , x +

k∆}|I|−1.

Lemma C.3. Fix some x + k∆ > x. If x + k∆ is justifiable given {x, x + ∆, . . . , x + ℓ∆}|I|−1, then

x+ (k − 1)∆ is justifiable given {x, x+∆, . . . , x+ ℓ∆}|I|−1.

C.2 Proof of Key Results

Proof of Lemma C.1. Fix s∗1 = · · · = s∗|I| = x+ k∆. Then s∗ is a Nash equilibrium if and only if, for

each i ∈ I and each each j ∈ {0, . . . , κ},

πi(s
∗
i , s

∗
−i) = B − ((x+ k∆)2(1− p)2) ≥ B − ((x+ j∆)− p(x+ k∆))2 = πi(x+ j∆, s∗−i).

Thus, s∗ is a Nash equilibrium if and only if, for each j ∈ {0, . . . , κ},

((x+ k∆)2(1− p)2) ≤ ((x+ j∆)− p(x+ k∆))2

or equivalently, for each j ∈ {0, . . . , κ},

(x+ k∆)2(1− 2p+ p2) ≤ (x+ j∆)2 + p2(x+ k∆)2 − 2p(x+ j∆)(x+ k∆)

or equivalently, for each j ∈ {0, . . . , κ},

(x+ k∆)2 − (x+ j∆)2 ≤ 2p(x+ k∆)2 − 2p(x+ j∆)(x+ k∆)

or equivalently, for each j ∈ {0, . . . , κ},

∆(k − j)(k + j) + 2x(k − j) ≤ 2p(x+ k∆)(k − j). (3)

First suppose that there is some j > k. Equation (3) holds for j > k if and only if

∆(k + j) + 2x ≥ 2p(x+ k∆).

Thus, Equation (3) holds for all j > k if and only if it holds for j = k + 1, i.e., if and only if,

∆(2k + 1) + 2x ≥ 2p(x+ k∆)
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or equivalently if and only if

2(x+ k∆)(1− p) ≥ −∆.

This trivially holds since x ≥ 0 and ∆ > 0.

Second, suppose that there is some j < k. Equation (3) holds for j < k if and only if

∆(k + j) + 2x ≤ 2p(x+ k∆).

Thus, Equation (3) holds for all j < k if and only if either k = 0 or k ≥ 1 and the condition holds for

j = k − 1. If k ≥ 1, this requires that

∆(2k − 1) + 2x ≤ 2p(x+ k∆)

or equivalently if and only if

2(x+ k∆)(1− p) ≤ ∆

or equivalently if and only if

(x+ k∆) ≤ ∆

2(1− p)
,

as stated.

Proof of Lemma C.2. We will show that, for each s−i = (sj : j ̸= i) ∈ {x, x + ∆, . . . , x + k∆}|I|−1,

πi(x + (k − 1)∆, s−i) > πi(x + k∆, s−i). To do so, observe that, for each s−i = (sj : j ̸= i) ∈ {x, x +

∆, . . . , x+ k∆}|I|−1,
1

|I| − 1

∑
j ̸=i

sj ∈ [x, x+ k∆].

Thus, it suffices to show that, for each α ∈ [x, x+ k∆],

B − (x+ (k − 1)∆− pα)
2
> B − (x+ k∆− pα)

2
. (4)

Fix some α ∈ [x, x+ k∆] and note that Equation (4) holds if and only if

(x+ (k − 1)∆− pα)
2
< (x+ k∆− pα)

2
.

or equivalently if and only if

(x+ (k − 1)∆)2 − 2pα(x+ (k − 1)∆) < (x+ k∆)2 − 2pα(x+ k∆)

or equivalently if and only if

(x+ (k − 1)∆)2 − (x+ k∆)2 < 2pα(x+ (k − 1)∆)− 2pα(x+ k∆)

or equivalently if and only if

(k − 1)2∆+ 2x(k − 1)− k2∆− 2xk < −2pα
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or equivalently if and only if

∆(−2k + 1)− 2x < −2pα

or equivalently if and only if

pα+
∆

2
< (x+ k∆).

But notice that

pα+
∆

2
≤ p(x+ k∆) +

∆

2
.

So it suffices to show that

(x+ k∆)(1− p) >
∆

2
,

which holds by the assumption that x+ k∆ > ∆
2(1−p) .

To prove Lemma C.3, it will be useful to have an auxiliary result. Given νi ∈ ∆(S−i), write

Eνi(s−i) =
1

|I| − 1

∑
(sj :j∈I\{i})∈S−i

 ∑
j∈I\{i}

sj

 νi((sj : j ∈ I\{i})),

for the expected strategy played under the belief νi.

Lemma C.4. Fix si = x+ k∆ so that si ∈ BRi[νi] for some νi ∈ ∆(S−i). Then there exist a y ∈ [0, κ] so

that

(i) x+ y∆ = max{pEνi
(s−i), x}, and

(ii) k is either ⌊y⌋ or ⌈y⌉.

Moreover, if both ⌊y⌋, ⌈y⌉ ∈ {0, . . . , κ}, then k = ⌊y⌋ only if y − ⌊y⌋ ≤ ⌈y⌉ − y and k = ⌈y⌉ only if

⌈y⌉ − y ≤ y − ⌊y⌋.

Proof. Construct an auxiliary function fi : [0, x+ κ∆]×∆(S−i) → R so that

fi(xi, νi) =
∑

(sj :j∈I\{i})∈S−i

B − (xi −
p

|I| − 1

∑
j∈I\{I}

sj)
2

 νi((sj : j ∈ I\{i})).

Note, for any νi ∈ ∆(S−i), fi(xi, νi) is strictly increasing at xi (resp. strictly decreasing) provided xi <

pEνi(s−i) (resp. xi > pEνi(s−i)); it is maximized at x∗i = pEνi(s−i).

Fix some νi. If pEνi(s−i) ≤ x, take y = 0 and note that ⌊0⌋ = ⌈0⌉ = 0 from which the result follows.

So, for the remainder, assume pEνi(s−i) > x.

Note, there exists some y ∈ (0, κ] so that x + y∆ = pEνi(s−i). Since, for each si ∈ Si, πi(si, νi) =

fi(si, νi), we can conclude:

(i) If k < ⌊y⌋, then πi(x+ k∆, νi) < πi(x+ ⌊y⌋∆, νi); and

(ii) if k > ⌈y⌉, then πi(x+ k∆, νi) < πi(x+ ⌈y⌉∆, νi).

As a consequence, if x+ k∆ ∈ BRi[νi] then either k = ⌊y⌋ or k = ⌈y⌉.
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Finally, observe that, for each z ∈ R, fi(pEνi
(s−i) + z, νi) = fi(pEνi

(s−i) − z, νi). So, fi(x + ⌊y⌋∆) ≥
fi(x + ⌈y⌉∆) if and only if y − ⌊y⌋ ≤ ⌈y⌉ − y. And, similarly, fi(x + ⌊y⌋∆) ≤ fi(x + ⌈y⌉∆) if and only if

y − ⌊y⌋ ≥ ⌈y⌉ − y.

Proof of Lemma C.3. Suppose si = x+ k∆ > x is justifiable given {x, x+∆, . . . , x+ ℓ∆}|I|−1. Using

the definition of justifiability and Lemma C.2, it follows that ℓ > k and there exists a ν0i ∈ ∆(S−i) that

satisfies the following properties:

(i) si ∈ BRi[ν
0
i ];

(ii) Supp ν0i ⊆ {x, x+∆, . . . , x+ ℓ∆}|I|−1; and

(iii) there must be a player j ̸= i and an sj ∈ {x+ (k + 1)∆, . . . , x+ ℓ∆} with marg Sj
ν0i (sj) > 0.

Note, if si −∆ ∈ BRi[ν
0
i ], then we are done. So, throughout, suppose si −∆ ̸∈ BRi[ν

0
i ].

Construct maps fj : Sj → Sj so that

fj(x+ n∆) =

x+ (n− 1)∆ if n ≥ 1

x if n = 0.

and let f−i : S−i → S−i be the associated product map. Let ν1i be the image measure of f−i under ν
0
i and

observe that Supp ν1i ⊆ {x, x+∆, . . . , x+ ℓ∆}|I|−1.

It suffices to show that BRi[ν
1
i ] ⊆ {si, si−∆}: If si−∆ = x+(k−1)∆ is a best response under ν1i , it is

justifiable given {x, x+∆, . . . , x+ ℓ∆}|I|−1. If not, ν1i satisfies the same three properties that ν0i satisfied

(properties (i)-(ii)-(iii)). Thus, we can repeat the argument and construct a ν2i that is the image measure

of f−i under ν
1
i . By construction, Supp ν2i ⊆ {x, x+∆, . . . , x+ℓ∆}|I|−1 and BRi[ν

2
i ] ⊆ {si, si−∆}. And so

on. The claim is that there must be anM so that {si−∆} ⊆ BRi[ν
M
i ]. If not, for each m, BRi[ν

m
i ] = {si}.

But, there exists m with νmi (x, . . . , x) = 1 and only x < si is a best response to s−i = (x, . . . , x), a

contradiction.

With the above in mind, we focus on showing that BRi[ν
1
i ] ⊆ {si, si−∆}. Observe that si = x+k∆ for

k ≥ 1; so, there exists some y0 > 0 with pEν0
i
(s−i) = x+ y0∆. Similarly, there exists some y1 ∈ R so that

pEν1
i
(s−i) = x + y1∆. (Note, y1 < 0 only if pEν0

i
(s−i) < x.) Since Eν1

i
(s−i) ∈ [Eν0

i
(s−i) − ∆,Eν0

i
(s−i)),

y1 ∈ [y0 − 1, y0).

Observe that BRi[ν
1
i ] ⊆ {x+ ⌊y1⌋∆, x+ ⌈y1⌉∆}. (See Lemma C.4.) Thus, it suffices to show that (i) if

x+ ⌊y1⌋∆ ∈ BRi[ν
1
i ], then ⌊y1⌋ ∈ {k, k − 1}, and (ii) if x+ ⌈y1⌉∆ ∈ BRi[ν

1
i ], then ⌈y1⌉ ∈ {k, k − 1}.

First, suppose that k = y0. Since y1 ∈ [y0 − 1, y0), it follows that ⌊y1⌋ = k − 1 and ⌈y1⌉ = k, as

required.

Second, suppose that k = ⌊y0⌋ < y0. If (x + ⌊y1⌋∆) ∈ BRi[ν
1
i ], then ⌊y1⌋ is either ⌊y0⌋ = k or

⌊y0 − 1⌋ = k − 1. (This follows from the fact that y1 ∈ [y0 − 1, y0).) So suppose (x + ⌈y1⌉∆) ∈ BRi[ν
1
i ].

Observe that

(k + 1) = ⌈y0⌉ ≥ ⌈y1⌉ ≥ ⌊y0 − 1⌋ = (k − 1),

where the first equality uses the fact that k = ⌊y0⌋ < y0. Thus, it suffices to show that ⌈y1⌉ ≠ (k + 1): If

⌈y0⌉ = ⌈y1⌉ = (k + 1) then k = ⌊y0⌋ ≥ ⌊y1⌋ implies ⌊y1⌋ = k. Since (x + ⌈y1⌉∆) ∈ BRi[ν
1
i ], y

1 − ⌊y1⌋ ≥
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⌈y1⌉ − y1 (Lemma C.4) and so

y0 − k > y1 − k = y1 − ⌊y1⌋ ≥ ⌈y1⌉ − y1 = (k + 1)− y1 > (k + 1)− y0

and so

y0 − ⌊y0⌋ > ⌈y0⌉ − y0

contradicting the fact that k = ⌊y0⌋ (Lemma C.4).

Third, suppose that k = ⌈y0⌉ > y0. If (x + ⌈y1⌉∆) ∈ BRi[ν
1
i ], then ⌈y1⌉ is either ⌈y0⌉ = k or

⌈y0 − 1⌉ = k − 1. (This follows from the fact that y1 ∈ [y0 − 1, y0).) So suppose (x + ⌊y1⌋∆) ∈ BRi[ν
1
i ].

Since k = ⌈y0⌉ ≥ ⌈y1⌉ ≥ ⌈y0 − 1⌉ = k − 1,

k ≥ ⌊y1⌋ ≥ (k − 2).

As such, it suffices to show that ⌊y1⌋ ̸= (k − 2). Suppose, contra hypothesis, that ⌊y1⌋ = (k − 2). Using

the fact that ⌈y1⌉ ≥ ⌈y0 − 1⌉ = k − 1, ⌈y1⌉ = k − 1. Since (x + ⌊y1⌋∆) ∈ BRi[ν
1
i ], ⌈y1⌉ − y1 ≥ y1 − ⌊y1⌋

(Lemma C.4),

(k − 1)− y1 ≥ y1 − (k − 2)

or

k − 3

2
≥ y1.

Now, using the fact that si ∈ BRi[ν
0
i ] and si −∆ ̸∈ BRi[ν

0
i ], y

0 − ⌊y0⌋ > ⌈y0⌉ − y0 (Lemma C.4). Since

k = ⌈y0⌉ > y0, ⌊y0⌋ = (k − 1) and so

y0 − (k − 1) > k − y0

or

y0 > k − 1

2
.

But now observe that

k − 3

2
≥ y1 ≥ y0 − 1 > k − 3

2
,

a contradiction.

C.3 Eliminating One Strategy at a Time

Recall, x̃(∆, p) = ∆
2(1−p) . The main text eluded to the following:

Proposition C.1. Suppose x+ κ∆ ≤ 3x̃(∆, p). Then there exists some M so that J(m) = J(m− 1)− 1

for all m < M and J(m) = J(M) for all m ≥M .

This proposition will follow from the following Lemma.

Lemma C.5. For each i ∈ I, set si = x + k∆ and s∗i = x + (k + 1)∆. If (s1, . . . , s|I|) is not a Nash

equilibrium, then si = x+ k∆ is a best response given s∗−i if and only if si = x+ k∆ ≤ ∆(2p+1)
2(1−p) .

To see why the lemma suffices: Recall J(0) = κ. If x+κ∆ ≤ x̃(∆, p), then J(m) = κ for all m. So suppose

x+κ∆ > x̃(∆, p). In this case J(1) < J(0). We will have J(1) = κ−1 if either (x+(κ−1)∆, . . . , x+(κ−1)∆)

is a Nash equilibrium or x+ (κ− 1)∆ is a best response under (x+ κ∆, . . . , x+ κ∆). The former requires
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x+κ∆ ≤ x̃(∆, p)+∆ and the latter requires x+κ∆ ≤ 3x̃(∆, p); since 3x̃(∆, p) > x̃(∆, p)+∆, J(1) = κ−1

if x+κ∆ ≤ 3x̃(∆, p). If J(2) = J(1), we are done. If not, J(2) = J(1)−1 since x+(κ−2)∆ < x+(κ−1)∆.

And so on.

Proof of Lemma C.5. For each j ∈ {0, . . . , κ},

πi(x+ k∆, s∗−i) ≥ πi(x+ j∆, s∗−i)

if and only if, for each j ∈ {0, . . . , κ},

((x+ k∆)− p(x+ (k + 1)∆))2 ≤ ((x+ j∆)− p(x+ (k + 1)∆))2

or equivalently, for each j ∈ {0, . . . , κ},

(x+ k∆)2 − 2p(x+ (k + 1)∆)(x+ k∆) ≤ (x+ j∆)2 − 2p(x+ (k + 1)∆)(x+ j∆)

or equivalently, for each j ∈ {0, . . . , κ},

∆(k + j)(k − j) + 2x(k − j) ≤ 2p(x+ (k + 1)∆)(k − j). (5)

First, observe that Equation (5) holds for each j > k if and only if

∆(k + j) + 2x ≥ 2p(x+ (k + 1)∆).

Thus, it will hold for all j > k if and only if it holds for j = k + 1, i.e., if and only if

∆(2k + 1) + 2x ≥ 2p(x+ (k + 1)∆).

or if and only if

2(1− p)(x+ k∆) ≥ ∆(2p− 1).

Since (s1, . . . , s|I|) is not a Nash equilibrium 2(1 − p)(x + k∆) > ∆. Given that ∆ ≥ (2p − 1)∆, the

conclusion holds.

Second, observe that Equation (5) holds for each j < k if and only if

∆(k + j) + 2x ≤ 2p(x+ (k + 1)∆).

Thus, it will hold for all j < k if and only if it holds for j = k − 1, i.e., if and only if

∆(2k − 1) + 2x ≤ 2p(x+ (k + 1)∆).

or if and only if

2(1− p)(x+ k∆) ≤ (1 + 2p)∆,

as stated.
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Appendix D Proofs for Section 9

D.1 Proof of Proposition 9.1

The proof is analogous to Example 9.1: Since each |Si| ≥ 2, take {2i,3i} ⊆ Si. Fix a non-degenerate

anchor µ, i.e., an anchor where each µi does not assign probability 1 to some strategy. Then, for each i,

there exists some strategy s−i ∈ S−i so that µi(s−i) ∈ (0, 1). Without loss of generality, suppose that, for

each i, this strategy profile is 2−i.

Inductively define hmi,2 so that h1i,2(2−i) = 1 and hm+1
i,2 (2−i, . . . , h

m
−i,2) = 1. Set hi,2 = (h1i,2, h

2
i,2, . . .).

Likewise, for each player i, inductively define hmi as follows: First, set h1i = µi. Second, h
m
i (2−i, h

1
−i,2, . . . , h

m
−i,2) =

p ∈ (0, µi(2−i)). (Note, p does not depend on m.) Set hi = (h1i , h
2
i , . . .). Proposition 9.1 will follow from

the following two lemmata.

Lemma D.1. Fix a type structure T = (S−i, Ti, βi : i ∈ I). If there exists a type ti ∈ Ti with δi(ti) = hi,

then there must be a type t−i,2 ∈ T−i with δ−i(t−i,2) = h−i,2.

Proof. Suppose there is a type ti ∈ Ti with δi(ti) = hi. Note, for each m ≥ 1,

hm+1
i (2−i, h

1
−i,2, . . . , h

m
−i,2) = p

or, equivalently, βi(ti)(E
m+1
i ) = p for

Em+1
i := (ρm+1

i )−1({2−i, h
1
−i,2, . . . , h

m
−i,2}).

Observe that the sets Em
i are decreasing, i.e., for each m ≥ 2, Em+1

i ⊆ Em
i . Since (βi(ti)(E

m
i ) : m ≥ 2) =

(p, p, p, . . .),

p = lim
m→∞

βi(ti)(E
m
i ) = βi(ti)(

⋂
m≥2

Em
i ).

(See, e.g., Theorem 10.8 in Aliprantis and Border, 2007.) Thus,⋂
m≥2

Em
i ̸= ∅,

i.e., there exists some type t−i ∈ T−i with δ−i(t−i) = (h1−i,2, h
2
−i,2, . . .), as required.

Lemma D.2. If T = (S−i, Ti, βi : i ∈ I) is a level-k type structure for µ, then there is no type ti,2 ∈ Ti

with δi(ti,2) = hi,2.

Proof. For each i ∈ I, let Ci = {Tm
i : m = 1, 2, . . .} be a Borel cover so that (Ci : i ∈ I) jointly satisfy

conditions (i)-(ii) of Definition 5.1. We will show that, for each m ≥ 1, and each ti ∈ Tm
i , δmi (ti) ̸= hmi,2.

The proof is by induction on m.

The case of m = 1 is immediate: If ti ∈ T 1
i , δ

1
i (ti)(2−i) ̸= 1 and so δ1i (ti) ̸= h1i,2. Suppose then that

the claim holds for m. Fix ti ∈ Tm+1
i . By the induction hypothesis,

(ρm+1
i )−1(S−i × {(h1−i,2, . . . , h

m
−i,2)}) ∩ (S−i × Tm

−i) = ∅.
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Since βi(ti)(S−i × Tm
−i) = 1,

βi(ti)((ρ
m+1
i )−1(S−i × {(h1−i,2, . . . , h

m
−i,2)})) = 0

and so δm+1
i (ti) ̸= hm+1

i,2 .

D.2 Properties of Level-k Type Structures

Example D.1. This example shows that, for a given level-k type structure, we may not be able to choose

the cover to be a partition. As such, we may have that a type is both a m-type and an n-type for every

associated cover.

Construct an S-based level-k type structures for µ, viz. T = (S−i, Ti, βi : i ∈ I), as follows: For each i,

take Ti = N+. Choose βi so that it satisfies the following properties. First, marg S−i
βi(ti) = µi if and only

if ti ∈ {1, 3}. Second, Suppmarg T−i
βi(1) = T−i. Third, βi(2)(S−i ×{1}) = βi(2)(S−i ×{3}) = 1

2 . Fourth,

for each k ≥ 2, βi(k + 1)(S−i × {k}) = 1.

This is a level-k type structure for µ. We can choose the cover {Tm
i : m = 1, 2, . . .} so that T 1

i = {1, 3}
and, for eachm ≥ 2, Tm

i = {m}. This cover is non-partitional. However, any cover must be non-partitional.

To see this, fix a cover {Um
i : m = 1, 2, . . .}. Since Suppmarg T−i

βi(1) = T−i, it must be that 1 ∈ U1
i . So,

U1
i is either {1} or {1, 3}. If U1

i = {1} then U2
−i = ∅. So we must have U1

i = {1, 3} and, from this, it

follows that U2
i = {2}. But this implies that U3

i = {3}. Thus, any cover must have U1
i ∩ U3

i ̸= ∅. 2

Example D.2. This example shows that, for any anchor µ, there may be a level-k type structure for µ

where the associated Borel cover is not unique. As a result, a type ti may be a m-type for one associated

cover and an n-type for another associated cover, despite the fact that m ̸= n.

Fix an anchor µ. Construct a type structure as follows: For each i, take Ti = N+. Choose βi so

that it satisfies the following properties. First, marg S−i
βi(ti) = µi if and only if ti ∈ {1, 3}. Second,

Suppmarg T−i
βi(1) = T−i. Third, for each m ≥ 1, βi(m+ 1)(S−i × {m}) = 1.

This is a level-k type structure for µ. Notice, we can take the cover {Tm
i : m = 1, 2, . . .} so that

Tm
i = {m} for each m. This cover is a partition. However, there is a second non-partitional cover

{Um
i : m = 1, 2, . . .} with U1

i = {1, 3} and, for each m ≥ 2, Um
i = {m}. Under the first cover, 3 is a 3-type,

while under the second cover, 3 is both a 1-type and a 3-type. 2

D.3 Finite-Order Belief Type Structures

We begin by introducing a type structure that can capture the idea that a player thinks other players do

not have an mth-order belief.

Definition D.1. A finitary S-based type structure is some T̃ = (S−i, T̃i, β̃i : i ∈ I) where, for each

i ∈ I,

(i) T̃i is a metrizable set of types for i,

(ii) β̃i : T̃i → ∆(S−i × T̃−i) ∪ {d} is a measurable belief map for i, and

(iii) T̃i\(β̃i)−1({d}) ̸= ∅.
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To better understand, observe that, now, there can be a type t̃i ∈ T̃i with β̃i(t̃i) = d. This type is a “dummy

type,” that is not associated with a belief. Loosely, think of this type as one that does not “reason.” So,

if βi(ti) assigns positive probability to a “dummy type” of player j, then ti assigns positive probability to

the event that player j “does not reason.” The fact that each T̃i\(β̃i)−1({d}) ̸= ∅ implies that no player

only has “dummy types.” We refer to a finitary S-based type structure as, a finitary type structure

Say (si, t̃i) is rational if β̃i(t̃i) ̸= {d} and satisfies the condition in Definition 6.1. Say t̃i believes an

event E−i if β̃i(t̃i) ̸= {d} and t̃i satisfies the condition in Definition 6.2. We define RmBR analogously to

Definition 6.3. Write R̃1
i for the set of rational strategy-type pairs and R̃m+1

i for the set of strategy-type

pairs which satisfy rationality and mth-order belief of rationality.

Each ordinary type structure is also a finitary S-based type structure. With this in mind, we focus

on showing that the RmBR predictions of a finitary type structure can be replicated in an ordinary type

structure. In doing so, we will focus on type structures that are first-order complete: Call T̃ first-order

complete if, for each νi ∈ ∆(S−i), there exists some t̃i ∈ T̃i with marg S−i
β̃i(t̃i) = νi.

Proposition D.1. Fix a game with no weakly dominant strategy. Let T̃ = (S−i, T̃i, β̃i : i ∈ I) be a

finitary type structure that is first-order complete. Then, there exists an ordinary S-based type structure

T = (S−i, Ti, βi : i ∈ I) with each Ti ⊆ T̃i so that

(i) for each ti ∈ Ti, (si, ti) ∈ Rm
i if and only if (si, ti) ∈ R̃m

i , and

(ii) proj Si
Rm

i = proj Si
R̃m

i .

To prove Proposition D.1, we will make use of the following fact: If a game has no weakly dominant

strategy for i, then we can find a mapping fi : Si → ∆(S−i) so that, for each si ∈ Si, si ̸∈ BRi[fi(si)].

As a consequence, each strategy can be inconsistent with rationality. This is important: If t̃i is a “dummy

type,” each element of Si × {t̃i} is irrational. We would like a type ti that assigns positive probability

to (si, t̃i) to retain its marginal belief about behavior, while continuing to assign positive probability to

irrationality.

Proof of Proposition D.1. Fix a game with no weakly dominant strategy and an associated finitary

type structure that is first-order complete, viz. T̃ . Let Ti = T̃i\(β̃i)−1({d}). Since β̃i is measurable, Ti is

a Borel subset of T̃i. Endow Ti with the relative topology and note that it is metrizable.

To construct the belief maps, it will be useful to first define auxiliary maps. Recall, since the game

has no weakly dominant strategies, we can find mappings fi : Si → ∆(S−i) so that, for each si ∈ Si,

si ̸∈ BR[fi(si)]. Since T̃ is first-order complete, there are mappings τ̃i : Si → T̃i such that, for each si,

β̃i(τ̃i(si)) ̸= d and marg S−i
β̃i(τ̃i(si)) = fi(si). Now, define maps τi : Si × T̃i → Si × Ti so that

τi(si, ti) =

(si, ti) if ti ∈ Ti

(si, τ̃i(si)) if ti ̸∈ Ti.

Observe that

τi({si} × (T̃i\Ti)) =

∅ if T̃i\Ti = ∅

{(si, τ̃i(si))} if T̃i\Ti ̸= ∅.
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As a consequence, τi is measurable: For each Borel Ei ⊆ Si × Ti,

(τi)
−1(Ei) =

 ⋃
si:(si,τ̃i(si))∈Ei and τ̃i(si) ̸∈Ti

({si} × (T̃i\Ti))

 ∪ Ei

is the finite union of Borel sets and so Borel.

Let βi : Ti → ∆(S−i × T−i) so that, for each ti ∈ Ti, βi(ti) is the image measure of β̃i(ti) under τ−i.

Note, βi is measurable, since βi = τ−i ◦ β̃i.
To better understand the construction, consider the set of types

T ◦
i = {ti ∈ Ti : β̃i(ti)(S−i × T−i) = 1}.

Note, for each ti ∈ T ◦
i and each Borel E−i ⊆ S−i × Ti, βi(ti)(E−i) = β̃i(ti)(E−i). Consider instead some

ti ∈ Ti\T ◦
i . Then, there exists some j ̸= i so that marg S−j×T−j

β̃i(ti)(Sj×(T̃j\Tj)) > 0. As such, there will

be (sj , τj(sj)) so that marg Sj×Tj
βi(ti)({(sj , τ̃j(sj))}) > 0. The key is that each (sj , τ̃j(sj)) is irrational.

With this in mind, we complete the proof by showing the following: For each m ≥ 1 and each ti ∈ Ti,

(i) (si, ti) ∈ Rm
i if and only if (si, ti) ∈ R̃m

i .

(ii) if ti ∈ Ti\T ◦
i , (Si × {ti}) ∩Rm+1

i = (Si × {ti}) ∩ R̃m+1
i = ∅.

The proof is by induction on m.

m = 1: Fix ti ∈ Ti. By construction, marg S−i
β̃i(ti) = marg S−i

βi(ti). As such, (si, ti) ∈ R1
i if and only if

(si, ti) ∈ R̃1
i .

Now suppose that ti ∈ Ti\T ◦
i . Since R̃

1
−i ⊆ S−i × T−i and β̃i(ti)(S−i × T−i) < 1, (Si × {ti}) ∩ R̃2

i = ∅.
Similarly, there must be some j ̸= i and some sj ∈ Sj so that marg Sj×Tj

βi(ti)({(sj , τ̃j(sj))}) > 0. Since

(sj , τ̃j(sj)) ̸∈ R1
j , it follows that (Si × {ti}) ∩R2

i = ∅.

m ≥ 2: Suppose the claim holds for m ≥ 1. Fix a type ti ∈ Ti. If ti ̸∈ T ◦
i then the claim follows from the

fact that (Si × {ti}) ∩R2
i = (Si × {ti}) ∩ R̃2

i = ∅. So suppose ti ∈ T ◦
i . Note βi(ti) believes R

m
−i if and only

if β̃i(ti) believes R
m
−i. (This is by construction.) By the induction hypothesis, Rm

−i = R̃m
−i, as required.

D.4 Fine Grid

Finite Game Consider the beauty contest. For any given m ≥ 1, there exists a ε-fine grid so that the

m-rationalizable strategies are strictly contained in the (m− 1)-rationalizable strategies. To see this fix a

sequence ((∆n, κn) : n ≥ 1) where, for each n, ∆nκn = x and limn→∞ ∆n = 0. For a given grid (∆n, κn),

we eliminate a strategy on round m if κn ≥ m and x+ (κn −m+ 1)∆n > ∆n
|I|−2p

2|I|(1−p) . For each m, there

exists some N(m) so that κn ≥ m for all n ≥ N(m). (This follows from the fact that κn∆n = x − x > 0

and limn→∞ ∆n = 0.) Now observe that there is an N(m) ≥ N(m) so that, for each n ≥ N(m),

x > ∆n
|I| − 2p

2|I|(1− p)
+ ∆n(m− 1).

So, for any n ≥ N(m), the m-rationalizable strategies are a strict subset of the (m − 1)-rationalizable

strategies in the game associated with the grid (∆n, κn).
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Infinite Game Suppose instead that, in the beauty contest, Si = [x, x] where x > x ≥ 0. We will argue

that, for each m ≥ 1, [x, x) ⊆ Sm
i .

Fix some si ∈ [x, x) with si ̸= 0. Observe that there exists some

α ∈
(
1,min

{
|I| − p

p|I| − p
,
x

si

})
.

Note, since α < x
si
, αsi ∈ [x, x). Suppose νi assigns probability 1 to (αsi, . . . , αsi). To show that

si ∈ BRi[νi] it suffices to show that πi(si, νi) = 1. Notice that αsi > si since α > 1 and si > 0. So, if the

target is smaller than si, πi(si, νi) = 1. In fact, the target is

p
si + (|I| − 1)αsi

|I|
.

Since α > |I|−p
p|I|−p , si is strictly higher than the target, as desired.

Next, suppose that si = 0. Then si = x = 0. In that case, let νi assigns probability 1 to (x, . . . , x) so

that πi(si, νi) > 0. If i instead chooses yi > x = 0, πi(yi, νi) = 0: This follows since y− py
|I| >

py
|I| . (Here we

use the fact that |I| ≥ 3.)

If follows that [x, x) ⊆ S1
i . Moreover, we showed that each si ∈ [x, x) is a best response under a νi with

νi([x, x)
|I|−1) = 1. Since [x, x)|I|−1 ⊆ S1

−i, the claim follows by induction.
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Li, Ying Xue and Burkhard C Schipper. 2020. “Strategic reasoning in persuasion games: An experiment.”

Games and Economic Behavior 121:329–367.

Liu, Shuige and Gabriel Ziegler. 2025. “Reasoning about Bounded Reasoning.” arXiv preprint

arXiv:2506.19737 .

Mertens, J.F. and S. Zamir. 1985. “Formulation of Bayesian Analysis for Games with Incomplete Informa-

tion.” International Journal of Game Theory 14(1):1–29.

Nagel, R. 1995. “Unraveling in Guessing Games: An Experimental Study.” The American Economic

Review 85(5):1313–1326.

Schipper, Burkhard C and Hang Zhou. 2024. “Level-k thinking in the extensive form.” Economic Theory

pp. 1–41.

Seel, Christian and Elias Tsakas. 2017. “Rationalizability and Nash equilibria in Guessing Games.” Games

and Economic Behavior 106:75–88.

Stahl, D. and P. Wilson. 1995. “On Players’ Models of Other Players: Theory and Experimental Evidence.”

Games and Economic Behavior 10(1):218–254.

Stahl, Dale O. and Paul W. Wilson. 1994. “Experimental Evidence on Player’s Models of Other Players.”

Journal of Economic Behavior and Organization 25(3):309–327.

Strzalecki, Tomasz. 2014. “Depth of reasoning and higher order beliefs.” Journal of Economic Behavior &

Organization 108:108–122.

Tan, T.C.C. and S.R. Werlang. 1988. “The Bayesian Foundations of Solution Concepts of Games.” Journal

of Economic Theory 45(2):370–391.

Wright, James R and Kevin Leyton-Brown. 2019. “Level-0 models for predicting human behavior in

games.” Journal of Artificial Intelligence Research 64:357–383.

51

http://tuvalu.santafe.edu/~willemien.kets/
http://tuvalu.santafe.edu/~willemien.kets/
http://tuvalu.santafe.edu/~willemien.kets/
http://tuvalu.santafe.edu/~willemien.kets/

	Introduction
	 Heuristic Treatment
	The Environment
	The Epistemic Game
	 Type Structures and Hierarchies of Beliefs

	 Hierarchies of Beliefs Induced by the Anchor
	Hierarchies of Partial Beliefs
	Hierarchies of Beliefs Consistent with the Anchor

	 Level-k Type Structures
	Level-k Type Structure
	 Hierarchies Induced by Level-k Type Structures
	Complete Level-k Type Structures

	 The Inference Problem
	Rationality and mth-order Belief of Rationality
	The Unrestricted Inference Problem
	The Restricted Inference Problem
	Proof of Theorem 6.1

	 The Level-k Inference Problem
	The Level-k Solution Concept
	Epistemic Foundations for Level-k
	 Identifying Levels of Reasoning about Rationality

	 Applications
	 Beauty Contest
	Guessing Games
	11-20 Game

	 Discussion
	Conclusion
	Proofs for Sections 4-5
	Type Structures Induce Hierarchies of Beliefs
	Proof of Proposition 5.1
	Proof of Proposition 5.2
	 Proof of Proposition 5.3

	Proofs for Sections 6-7
	Proofs for Section 6
	Proof of Theorem 7.1
	Result for Section 7.3

	 Proofs for Section 8
	Key Results
	Proof of Key Results
	Eliminating One Strategy at a Time

	 Proofs for Section 9
	Proof of Proposition 9.1
	Properties of Level-k Type Structures
	Finite-Order Belief Type Structures
	 Fine Grid


